
Introduction to
Computational Thinking

Object-oriented programming

Qiao Xiang, Qingyu Song

https://sngroup.org.cn/courses/ct-
xmuf25/index.shtml

12/10/2025

This deck of slides are heavily based on cs112 at Yale University and cs101 at UCAS, respectively,

by courtesy of Dr. Y. Richard Yang and Dr. Zhiwei Xu.

Recap: Class, Object, Variable, Field

PointMain.java (client program)

public class PointMain {

 main(String args) {

 Point p1 = new Point();

 p1.x = 50;

 p1.y = 27;

 Point p2 = p1;

 Point p3 = new Point();

 p3.x = 98;

 p3.y = 53;

 ...

 }

}

Point.java (class of objects)

public class Point {

 int x;

 int y;

}

x 50 y 27

x 98 y 53

fieldsobjects
classObject variables (references)

Recap: Static Method vs Instance
Method

3

public class Point {

 int x;

 int y;

 public static void draw(Point p) {

 StdDraw.filledCircle(p.x, p.y, 3, 3);

 StdDraw.textLeft(p.x, p.y, "(" + p.x + ", " + p.y + ")”);

 }

}

public class Point {

 int x;

 int y;

 public static void draw(Point p) {

 StdDraw.filledCircle(p.x, p.y, 3, 3);

 StdDraw.textLeft(p.x, p.y, "(" + p.x + ", " + p.y + ")”);

 }

}

Recap: Defining Related Method and Data in
the Same Class: Instance Method

public class Point {

 int x;

 int y;

 public static void draw(Point p) {

 StdDraw.filledCircle(p.x, p.y, 3);

 StdDraw.textLeft(p.x, p.y,

 "(" + p.x + ", " + p.y + ")”);

 }

}

Point p1 = new Point();
p1.x = 7; p1.y = 2;
p1.draw(); // Point.draw(p1);

Point p2 = new Point();
p2.x = 4; p2.y = 3;
p2.draw(); // Point.draw(p2);

p1 provides the implicit

parameter: The x and y in

draw() are those of the

object referenced by p1.

p2 provides the implicit

parameter: The x and y in

draw() are those of the

object referenced by p2. 4

5

Outline

❑Defining classes
• Data encapsulation (struct)
• Data+behavior encapsulation

• instance methods
– constructors

Initializing objects

❑ Currently it takes 3 lines to create a Point and
initialize it:
Point p = new Point();

p.x = 3;

p.y = 8; // tedious（乏味）

❑ We'd rather specify the fields' initial values at
the start:
Point p = new Point(3, 8); // better!

• We are able to do this with most types of objects in
Java.

6

Constructors

❑ constructor: a special method to initialize the state of new

objects.

 public type(parameters) {
 statements;
 }

1. runs when the client uses the new keyword

2. no return type should be specified;

it implicitly "returns" the new object being created

3. If a class has no constructor, Java gives it a default

constructor with no parameters that sets all fields to zero-

equivalent values.

7

Constructor example

public class Point {

 int x;

 int y;

 // Constructs a Point at the given x/y location.

 public Point(int initialX, int initialY) {

 x = initialX;

 y = initialY;

 }

 public void translate(int dx, int dy) {

 x = x + dx;

 y = y + dy;

 }

 ...

}

8

Client (User) code

public class PointMain3 {

 public static void main(String[] args) {

 // create two Point objects

 Point p1 = new Point(5, 2);

 Point p2 = new Point(4, 3);

 // print each point

 System.out.println("p1: (" + p1.x + ", " + p1.y + ")");

 System.out.println("p2: (" + p2.x + ", " + p2.y + ")");

 // move p2 and then print it again

 p2.translate(2, 4);

 System.out.println("p2: (" + p2.x + ", " + p2.y + ")");

 }

}

9

Multiple Constructors

❑ A class can have multiple constructors.
• Each one must accept a unique set of parameters (same

rule of method overloading).

10

Common Constructor Issues

1. By accidentally giving the constructor a return type.
 Not a constructor, but a method named Point

 public void Point(int initialX, int initialY) {
 x = initialX;

 y = initialY;

 }

2. Declare a local variable with the same name as a field.
 Rather than storing value into the field, the param is passed to

local variable. The field remains 0.

 public class Point {

 int x;

 int y;

 public Point(int initialX, int initialY) {

 int x = initialX;
 int y = initialY;

 }

 }

11

Common Constructor Issues

❑ “shadowing”: 2 variables with same name in same scope.
• Normally illegal, except when one variable is a field

 public class Point {

 int x;

 int y;

 ...

 public Point(int x, int y) {

 System.out.println(“x = “ + x);// para x
 }

• In most of the class, x and y refer to the fields.

• In Point(int x, int y), x and y refer to the method's
parameters.

12

The this keyword: Access
Fields/Methods within Class
❑ this : Refers to the implicit parameter inside

your class.
 (a variable that stores the object on which a method is called)

• Refer to a field: this.field

• Call a method: this.method(parameters);

13

Fixing “Shadowing” with this

• To refer to the data field x: this.x

• To refer to the parameter x: x

 public class Point {

 int x;

 int y;

 ...

 public Point(int x, int y) {

 this.x = x;

 this.y = y;

 }

 public void setLocation(int x, int y) {

 this.x = x;

 this.y = y;

 }

 } 14

Calling another constructor

public class Point {

 private int x;

 private int y;

 public Point() {

 this(0, 0); // calls (x, y) constructor

 }

 public Point(int x, int y) {

 this.x = x;

 this.y = y;

 }

 ...

 }

• Avoids redundancy between constructors

• Only a constructor (not a method) can call another
constructor

15

Summary: Class Definition Components

❑ Variables
• fields (instance variables per object)

• static variables (shared by all objects)

❑Methods
• static methods (method usable with or without

objects)
• Can access only static variables

• instance methods (can be used only on objects;
can access both static and instance variables)
• Constructors

• Accessors (do not change object state)

• Mutators (modify object state)

16

17

Outline

❑Admin and recap

❑Defining classes
o Data encapsulation (struct)

o Data+behavior encapsulation (OOP)

➢ OOP design methodology

Example:
Procedural vs OOP Design

18

public class DrawRocket{

 public static void main(String args[]){

 for (int size = 3; size < 10; size++){

 drawRocket(size);

 }

 }

 public static void drawRocket(int scale){

 printCap(scale);

 ...

 }

 ...

 public static void printCap(int scale){

 ...

 }

}

public class RocketDrawing{

 public static void main(String args[]){

 for (int size = 3; size < 10; size++){

 Rocket curRocket = new Rocket(size);

 curRocket.draw();

 }

 }

}

public class Rocket{

 public int rocketSize;

 public Rocket(int rocketSize){

 this.rocketSize = rocketSize;

 }

 public void draw(){

 printCap();

 ...

 }

 ...

 public void printCap(){

 ...

 }

}

Function-oriented Object-oriented

Recap: Design and Implementation
Methodology: Procedural Based

❑Design (goal oriented)
• top-down stepwise goal-driven

method decomposition

• methods designed are those
needed for the current goal

• verb driven

❑Program implementation and testing
• bottom-up

19

Design and Implementation
Methodology: Object-Oriented

❑Design
• Identify objects that are part of the problem

domain or solution
• Each object has state (variables)

• Each object has behaviors (methods)

• Often do not consider one specific goal, but
rather a context (problem domain), to lead to
more reusable, extensible software

• noun driven

20

21

Example: The Ball Class

❑ We define a Ball class to model self-bouncing balls

22

The Ball Class

❑ Design questions:
• State: what field(s) do we need to represent the state of a self-

bouncing ball?
• rx, ry, current position
• radius: radius
• vx, vy, speed
• color, current color
• left, right, bottom, top: cage (boundaries)

• Behaviors/operations: what are some common behaviors of a self-
bouncing ball?
• A default constructor, to set up a random ball in unit square
• A constructor, to set up a ball with given parameters

• A move method, to update position
• A draw method, to display

See Ball.java, BouncingBalls.java

Bouncing Ball in Unit Square

public class Ball {

 double rx, ry;

 double vx, vy;

 double radius;

 public Ball() {

 rx = ry = 0.5;

 vx = 0.015 - Math.random() * 0.03;

 vy = 0.015 - Math.random() * 0.03;

 radius = 0.01 + Math.random() * 0.01;

 }

 public void move() {

 if ((rx + vx > 1.0) || (rx + vx < 0.0)) vx = -vx;

 if ((ry + vy > 1.0) || (ry + vy < 0.0)) vy = -vy;

 rx = rx + vx;

 ry = ry + vy;

 }

 public void draw() {

 StdDraw.filledCircle(rx, ry, radius);

 }

}

instance variables

Ball.java

Bounce反弹

constructor

methods

23

An Array of Objects

❑It is common that we create an array of objects
• Use new to invoke constructor and create each one.

public class BouncingBalls {

 public static void main(String[] args) {

 int N = Integer.parseInt(args[0]);

 Ball balls[] = new Ball[N];

 for (int i = 0; i < N; i++)

 balls[i] = new Ball();

 while(true) {

 StdDraw.clear();

 for (int i = 0; i < N; i++) {

 balls[i].move();

 balls[i].draw();

 }

 StdDraw.show(20);

 }
 }
}

create and initialize
N objects

animation loop

24

25

Outline

❑Admin and recap

❑Defining classes
o Data encapsulation (struct)

o Data+behavior encapsulation (OOP)

o OOP design methodology

o Objects and reference semantics

Object References

❑ Recall: non-primitive variables store references

❑ Reference: essentially machine address (pointer).

Ball b1 = new Ball();

b1.move();

b1.move();

Ball b2 = new Ball();

b2.move();

b2 = b1;

b2.move();

main memory
(64-bit machine)

100 0

101 0

102 0

103 0

104 0

105 0

106 0

107 0

108 0

109 0

110 0

111 0

112 0

addr value

Object References

❑ Recall: non-primitive variables store references

❑ Reference: essentially machine address (pointer).

Ball b1 = new Ball();

b1.move();

b1.move();

Ball b2 = new Ball();

b2.move();

b2 = b1;

b2.move();

main memory
(64-bit machine)

100 0

101 0

102 0

103 0

104 0

105 0

106 0

107 0

108 0

109 0

110 0

111 0

112 0

100

0.50

0.50

0.05

0.01

0.03

addr value

b1

rx

ry

vx

vy

radius

Object References

❑ Recall: non-primitive variables store references

❑ Reference: essentially machine address (pointer). 0.50

0.50

0.05

0.01
Ball b1 = new Ball();

b1.move();

b1.move();

Ball b2 = new Ball();

b2.move();

b2 = b1;

b2.move();

main memory
(64-bit machine)

100

101

102

103

104 0.03

105 0

106 0

107 0

108 0

109 0

110 0

111 0

112 0

100

registers

0.55

0.51

addr value

b1

rx

ry

vx

vy

radius

Object References

❑ Recall: non-primitive variables store references

❑ Reference: essentially machine address (pointer).

Ball b1 = new Ball();

b1.move();

b1.move();

Ball b2 = new Ball();

b2.move();

b2 = b1;

b2.move();

main memory
(64-bit machine)

100 0.55

101 0.51

102 0.05

103 0.01

104 0.03

105 0

106 0

107 0

108 0

109 0

110 0

111 0

112 0

100

registers

0.60

0.52

addr value

b1

rx

ry

vx

vy

radius

Object References

❑ Recall: non-primitive variables store references

❑ Reference: essentially machine address (pointer).

Ball b1 = new Ball();

b1.move();

b1.move();

Ball b2 = new Ball();

b2.move();

b2 = b1;

b2.move();

main memory
(64-bit machine)

100 0.60

101 0.52

102 0.05

103 0.01

104 0.03

105 0

106 0

107 0

108 0

109 0

110 0

111 0

112 0

100

registers

107 0.50

0.50

0.07

0.04

0.04

addr value

b1

b2

rx

ry

vx

vy

radius

rx

ry

vx

vy

radius

Object References

❑ Recall: non-primitive variables store references

❑ Reference: essentially machine address (pointer).

Ball b1 = new Ball();

b1.move();

b1.move();

Ball b2 = new Ball();

b2.move();

b2 = b1;

b2.move();

main memory
(64-bit machine)

100 0.60

101 0.52

102 0.05

103 0.01

104 0.03

105 0

106 0

107 0.50

108 0.50

109 0.07

110 0.04

111 0.04

112 0

107

registers

100

0.57

0.54

addr value

b1

b2

rx

ry

vx

vy

radius

rx

ry

vx

vy

radius

Object References

❑ Recall: non-primitive variables store references

❑ Reference: essentially machine address (pointer).

Ball b1 = new Ball();

b1.move();

b1.move();

Ball b2 = new Ball();

b2.move();

b2 = b1;

b2.move();

main memory
(64-bit machine)

100 0.60

101 0.52

102 0.05

103 0.01

104 0.03

105 0

106 0

107 0.57

108 0.54

109 0.07

110 0.04

111 0.04

112 0

100

registers

100

addr value

b1

b2

Data stored in 107 – 111 for bit recycler

(garbage collection).

rx

ry

vx

vy

radius

rx

ry

vx

vy

radius

Object References

❑ Recall: non-primitive variables store references

❑ Reference: essentially machine address (pointer).

Ball b1 = new Ball();

b1.move();

b1.move();

Ball b2 = new Ball();

b2.move();

b2 = b1;

b2.move();

main memory
(64-bit machine)

100

addr

0.60

value

101 0.52

102 0.05

103 0.01

104 0.03

105 0

106 0

107 0.57

108 0.54

109 0.07

110 0.04

111 0.04

112 0

100

b1

Moving b2 also moves b1 since they are aliases that
reference the same object.

registers

100

b2

0.65

0.53

rx

ry

vx

vy

radius

rx

ry

vx

vy

radius

34

Outline

❑Admin and recap

❑Defining classes
o Data encapsulation (struct)

o Data+behavior encapsulation (OOP)

o OOP design methodology

o Objects and reference semantics

o OOP design examples

Design and Implementation
Methodology: Object-Oriented

❑Design
• Identify objects that are part of the problem

domain or solution
• Each object has state (variables)

• Each object has behaviors (methods)

• Constructors, accessors, mutators(修改器)

• Often do not consider one specific goal, but
rather a context

• noun driven

35

36

Example: The BankAccount Class

❑ We define an BankAccount class to model a bank account
❑ Design questions:

• State: what field(s) do we need to represent the state of a bank acct?
• acctNumber,an integer
• acctName, a string
• balance, an integer

• Behaviors/operations: what are some common behaviors of a bank
account in a simple banking context?
• A constructor, to set up the object

• Accessors
– a getBalance method, to return balance

– a toString method, to return a string description of the current state

• Mutators
– a withdraw method, to withdraw from the account

– a deposit method, to deposit into the account

– a addInterest method, to add interest

See BankAccount.java, Transactions.java

37

Example: Account and Transactions

public class BankAccount {
 final double RATE = 0.035;
 long acctNumber;
 String acctName;
 double balance;

 public BankAccount (String owner, long
account, double initial) {

 acctName = owner;
 acctNumber = account;
 balance = initial;
 }

 public double deposit (double amount) {
 if (amount >)

 balance = balance + amount;

 return balance;
 }
 …
}

public static void main (String[] args) {
 BankAccount aliceAcct =

 new BankAccount (“Alice", 11111, 100.00);

 BankAccount bobAcct =
 new BankAccount (“Bob", 22222, 200.00);

 BankAccount charlesAcct =
 new BankAccount (“Charles", 33333, 300.00);

 bobAcct.deposit (30.00);

 …
}

38

Example: The Three BankAccount
Objects in Transactions

aliceAcct: BankAccount

acctNumber = 11111

acctName = “Alice”
balance = 100.00

bobAcct: BankAccount

acctNumber = 22222

acctName = “Bob”
balance = 200.00

charlesAcct: BankAccount

acctNumber = 33333

acctName = “Charles”
balance = 300.00

After bobAcct.deposit (30.00);

aliceAcct: BankAccount

acctNumber = 11111

acctName = “Alice”
balance = 100.00

bobAcct: BankAccount

acctNumber = 22222

acctName = “Bob”
balance = 230.00

charlesAcct: BankAccount

acctNumber = 33333

acctName = “Charles”
balance = 300.00

39

Outline

❑Admin and recap

❑Defining classes
o Data encapsulation (struct)

o Data+behavior encapsulation (OOP)

o OOP design methodology

o Objects and reference semantics

o Simple examples

o The encapsulation(封装) principle

40

Two Views of an Object

❑ You can take one of two views of an object:
• external (API) - the interaction of the object

with its users

• internal (implementation) - the structure of
its data, the algorithms used by its methods

41

The Encapsulation Principle

Client Methods

Data/state

Client should not see

the internal state or

behaviors

Client can see only

the external API

(state and behaviors)

Encapsulation Analogy

Client API Implementation

client needs to know

how to use API
implementation needs to know

what API to implement

Encapsulation Analogy

❑As a client, you don't understand the inner
details of iPhone, and you don't need to.

❑Apple does not want to commit to any
internal details so that Apple can
continuously update the internal

Why Encapsulating Data

❑ Consistency: prevent "reach in" and directly alter
object's state
• Protect object from unwanted access

• Example: BankAccount balance.

• Maintain state invariants

• Example: Only allow BankAccounts with non-negative balance.

• Example: Only allow Dates with a month from 1-12.

❑ Flexibility: internally modify state without
worrying about breaking others’code
• Example: Point could be rewritten in polar, clients will not see

difference.

45

Accomplish Encapsulation:
Access Modifiers

❑ In Java, we accomplish encapsulation through the
appropriate use of access modifiers(修饰符)

❑ An access modifier is a Java reserved word that
specifies the accessibility of a method, data field,
or class
• we will discuss two access modifiers: public, private

• we will discuss the other modifier (protected) later

46

The public and private Access Modifiers

▪ access modifiers enforce encapsulation

• public members (data and methods): can be accessed
from anywhere

• private members: can be accessed from a method
defined in the same class

• Members without an access modifier: default private
accessibility,

47

Using Access Modifiers to
Implement Encapsulation: Methods

❑Only service methods should be made
public

❑Support or helper methods created
simply to assist service methods
should be declared private

48

The Effects of Public and Private Accessibility

violate

Encapsulation

Use Caution

enforce

encapsulation

provide services

to clients

support other

methods in the

class

public private

variables

methods

49

Examples: Set the Access Modifiers

❑ Coin

❑ Ball

❑ BankAccount

❑ Point

50

Class Diagram

Coin

- face : int

+ flip() : void

+ isHeads() : boolean

+ toString() : String

Above is a class diagram representing the Coin class.

“-” indicates private data or method

“+” indicates public data or method

class name

attributes

methods

51

Outline

❑Defining classes
o Motivation and basic syntax

o Simple examples

o The encapsulation principle

o OOP analysis examples
o Random objects vs Math.random

Static Math.random() method
vs
Random Objects

52

53

Recall: Math.random()

❑ public static double random()

• Returns a random number between 0 and 1

❑Since computer is deterministic (given the
same input parameter, gives the same
output), how can Math.random() return a
different number each time?

54

A Little Peek into Random
Number Generation

❑ The random numbers generated by Java are
actually pseudo-random numbers

❑ Suppose you get a random number Rn, the
next time you call it to get Rn+1, it returns:

 Rn+1 = (Rn * 25214903917 + 11) (mod m)
 it then converts to the right range to you !

❑ This method is proposed by D. H. Lehmer
• in mathematical jargon, Java uses a type of linear

congruential pseudorandom number generator

❑ Implication: the previously returned
random number must be remembered
• random method need to have memory (state)

The Random class

❑ OOP design is perfect for implementing random
numbers: a Random object has
• a state variable

• a next method: computes next state based on current state,
returns the new state

❑ Class Random is found in the java.util package.
 import java.util.Random;

Method name Description

Random(long seed) Create a random number using a seed (R0)

Random() Create a random number using a seed derived
from time

setSeed(seed) Initialize the random number generator

nextInt(<max>) Returns a random integer in the range [0, max)

in other words, 0 to max-1 inclusive

nextDouble() Returns a random real number in [0.0, 1.0)

Using Random Number Objects

 Random rand = new Random(); // Default, seed by time

get a random number from 0 to 9 inclusive:
 int n = rand.nextInt(10); // 0-9

get a random number from 1 to 20 inclusive

 int n = rand.nextInt(20) + 1; // 1-20 inclusive

get a random number in arbitrary range [min, max] inclusive:

 int n = rand.nextInt(<size of range>) + <min>

• where <size of range> is (<max> - <min> + 1)

57

How May Math.random()be
Implemented Directly?

public class Math {

 private static int R = 0;

 public static double random() {

 R = R * 25214903917 + 11;

 // result = convert to the right range

 return result;

 }

..

}

58

How May Math.random()be
Implemented using Random class?

public class Math {

 private static Random rand;

 public static double random() {

 if (rand == null)

 rand = new Random();

 return rand.nextDouble();

 }

..

}

A static variable,

also called a

singleton(单例).

A delegation (委托)

implementation

pattern.

59

Advantage and Issue of Using
Math.random()

❑Advantage
• Hide object-oriented programming, simplifying

programming (shorter program, no need to know
seeds)

❑Disadvantage
• Without the ability to realize and control the

state of the random variable
• In testing, we want to repeat the same sequence of

random numbers, but the Math.random design cannot
provide this capability.

60

Outline

❑Admin and recap

❑Defining classes
o Motivation and basic syntax

o Simple examples

o The encapsulation principle

o Object examples
o Random objects vs Math.random

❑ Object-oriented analysis

61

Discussion

❑A quite helpful tool in OO analysis is object
relationship analysis. What are some basic
object relationships?

62

Outline

❑Admin and recap

❑Defining classes
o Motivation and basic syntax

o Simple examples

o The encapsulation principle

o Object examples
o Random objects vs Math.random

❑ Object-oriented analysis
➢ Composition (has)/association relationship

Domain: Data Visualization

“ If I can't picture it, I can't

understand it. ”

 — Albert Einstein

63

Edward Tufte (美国统计学家) Create
charts with high data density that tell
the truth.

Domain: Visualization
of Geographical Regions

Example Use Cases

❑GeoMap.java

❑ RandomColorMap.java

❑ RedBlueMap.java

❑ ClickColorMap.java

Example Domain: Visualization
of Geographical Regions

Classes and their relationships?

67

Major Classes and Relationship

GeoMap Region

Polygon

Color

Point

1 m m 2

1

1

1

m

A composition

relationship An association

relationship

Polygon 多边形

68

Major Classes and Relationship

GeoMap

Region Region

String

…

PolygonColorColor

Point … Point

69

Major Classes and Relationship

GeoMap Region

Polygon

Color

Point

1 m m 2

1

1

1

m

A composition

relationship An association

relationship

Design question:
- What is the basic
controller structure?

❑ Retrieve(检索) region (standard)
• Batch: retrieve a list containing all regions

• Specific: retrieve one specific region (e.g., the one
being clicked)

❑ Coloring (customized)
• Map properties of each region to a color

70

Coloring Controller Structure

71

Major Classes and Relationship

GeoMap Region

Polygon

Color

Point

1 m m 2

1

1

1

m

A composition

relationship An association

relationship

Discussion:
- Public methods (API)

of Point for the
domain

72

Major Classes and Relationship

GeoMap Region

Polygon

Color

Point

1 m m 2

1

1

1

m

A composition

relationship An association

relationship

Discussion:
- Public methods (API)

of Polygon for the
domain

Polygon

public class Polygon {

 private final int N; // number of boundary points

 private final Point[] points; // the points

 // read from input stream

 public Polygon(Scanner input) {

 N = input.nextInt();

 points = new Point[N+1];

 for (int i = 0; i < N; i++) {

 points[i] = new Point (input);

 }

 points[N] = points[0];

 }

 …

 public void draw() { … }

 public void fill() { … }

 public boolean contains(Point p) { … }

 public Point centroid() { … }

 …
}

74

Major Classes and Relationship

GeoMap Region

Polygon

Color

Point

1 m m 2

1

1

1

m

A composition

relationship An association

relationship

Discussion:
- Public methods (API)

of Region

Region

public class Region {

 private final String regionName; // name of region

 private final String mapName;

 private final Polygon poly; // polygonal boundary

 private Color fillColor, drawColor;

 public Region(String mName, String rName, Polygon poly) {

 regionName = rName;

 mapName = mName;

 this.poly = poly;

 setDefaultColor();

 }

 public void setDrawColor (Color c) { drawColor = c; }

 public void draw() { setDrawColor(); poly.draw (); }

 public void fill() { … }

 public boolean contains(Point p) {

 return poly.contains(p);

 }

 public Point centroid() { return poly.centroid() }

 …

}

Q: Should Region have a
method that returns its
internal Polygon?

Even though most complexity
is in Polygon, Polygon is not
exposed. Region delegates (
委托) tasks internally to
Polygon.

75

Example Controllers

❑GeoMap.java

❑ RandomColorMap.java

❑ ClickColorMap.java

❑ RedBlueMap.java

76

Cartograms

❑ Cartogram. Area of state proportional to
number of electoral votes.

Michael Gastner, Cosma Shalizi, and Mark Newman
http://www-personal.umich.edu/~mejn/election/2016/

77

Cartograms

❑ Cartogram. Area of country proportional
to population.

78

79

Outline

❑Admin and recap

❑Defining classes

❑ Object-oriented design
o Composition (has)/association relationship and geo

visualization

➢ Inheritance(继承) relationship

Inheritance

❑Inheritance: Reuse classes by deriving a new class from
an existing one
• The existing class is called the parent class, or superclass, or

base class
• The derived class is called the child class or subclass.

❑As the name implies, the child inherits characteristics
of the parent
• The child class inherits every method and every data field

defined for the parent class

80

81

Visualize Inheritance

❑ The child class inherits all methods and data
defined for the parent class

Animal

- weight : int

+ getWeight() : int

Bird

- flySpeed : int

+ fly() : void

weight = 120

getWeight()

weight = 100

flySpeed = 30

getWeight()

fly()

an animal object

a bird object

	Default Section
	Slide 1: Introduction to Computational Thinking

	OOP
	Slide 2: Recap: Class, Object, Variable, Field
	Slide 3: Recap: Static Method vs Instance Method
	Slide 4: Recap: Defining Related Method and Data in the Same Class: Instance Method
	Slide 5: Outline
	Slide 6: Initializing objects
	Slide 7: Constructors
	Slide 8: Constructor example
	Slide 9: Client (User) code
	Slide 10: Multiple Constructors
	Slide 11: Common Constructor Issues
	Slide 12: Common Constructor Issues
	Slide 13: The this keyword: Access Fields/Methods within Class
	Slide 14: Fixing “Shadowing” with this
	Slide 15: Calling another constructor
	Slide 16: Summary: Class Definition Components

	OOP design and analysis
	Slide 17
	Slide 18: Example: Procedural vs OOP Design
	Slide 19: Recap: Design and Implementation Methodology: Procedural Based
	Slide 20: Design and Implementation Methodology: Object-Oriented
	Slide 21: Example: The Ball Class
	Slide 22: The Ball Class
	Slide 23: Bouncing Ball in Unit Square
	Slide 24: An Array of Objects
	Slide 25
	Slide 26: Object References
	Slide 27: Object References
	Slide 28: Object References
	Slide 29: Object References
	Slide 30: Object References
	Slide 31: Object References
	Slide 32: Object References
	Slide 33: Object References
	Slide 34
	Slide 35: Design and Implementation Methodology: Object-Oriented
	Slide 36: Example: The BankAccount Class
	Slide 37: Example: Account and Transactions
	Slide 38: Example: The Three BankAccount Objects in Transactions
	Slide 39
	Slide 40: Two Views of an Object
	Slide 41: The Encapsulation Principle
	Slide 42: Encapsulation Analogy
	Slide 43: Encapsulation Analogy
	Slide 44: Why Encapsulating Data
	Slide 45: Accomplish Encapsulation: Access Modifiers
	Slide 46: The public and private Access Modifiers
	Slide 47: Using Access Modifiers to Implement Encapsulation: Methods
	Slide 48: The Effects of Public and Private Accessibility
	Slide 49: Examples: Set the Access Modifiers
	Slide 50: Class Diagram

	OOP examples
	Slide 51
	Slide 52: Static Math.random() method vs Random Objects
	Slide 53: Recall: Math.random()
	Slide 54: A Little Peek into Random Number Generation
	Slide 55: The Random class
	Slide 56: Using Random Number Objects
	Slide 57: How May Math.random()be Implemented Directly?
	Slide 58: How May Math.random()be Implemented using Random class?
	Slide 59: Advantage and Issue of Using Math.random()

	Class relationship: Composition, association, inheritance
	Slide 60
	Slide 61
	Slide 62
	Slide 63: Domain: Data Visualization
	Slide 64: Domain: Visualization of Geographical Regions
	Slide 65: Example Use Cases
	Slide 66: Example Domain: Visualization of Geographical Regions
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73: Polygon
	Slide 74
	Slide 75: Region
	Slide 76: Example Controllers
	Slide 77: Cartograms
	Slide 78: Cartograms
	Slide 79
	Slide 80: Inheritance
	Slide 81: Visualize Inheritance

