Introduction to
Computational Thinking

Object-oriented programming

Qiao Xiang, Qingyu Song
https://sngroup.org.cn/courses/ct-
xmuf25/index.shtml

12/10/2025

This deck of slides are heavily based on cs112 at Yale University and cs101 at UCAS, respectively,
by courtesy of Dr. Y. Richard Yang and Dr. Zhiwei Xu.

Recap: Class, Object, Variable, Field

Object variables (references)

objects

fields class

n

N /

Pozh{.ﬁavaﬁﬂmébfdjanﬂ

a (client program)

PointMain {
main (St args) {
Point

public dass Point {

int
int
}

T

x| 50 |y| 27

Recap: Static Method vs Instance
Method

public class Point {
int x;
int y;
public static void draw(Point p) {
StdDraw.filledCircle(p.x, p.V, 3, 3);
StdDraw.textlLeft (p.x, p.y, "(" + p.x + ", " + p.y + ")),

}

public class Point {
int x;
int y;
public statie void draw(Peint—p)
StdDraw.filledCircle (p=x, =y, 3, 3);
StdDraw.textlLeft (p=x, =y, "(" + p=x + ", " + =y + "))

Recap: Defining Related Method and Data in
the Same Class: Tnstance Method

public class Point {
int x;
int y;

public statie void draw (Peint—p)— {
StdDraw.filledCircle (p=x, &=y, 3);
StdDraw. textlLeft (p=x, B=V,
"""t pex ", "+ ey £ "))

| } p1 provides the implicit
parameter: The x and y in

, _ draw() are those of the
Point pl = new Point (): object referenced by pl.
pl.x = 7;

pl.draw(); // Peointdrawitpir+

Point p2 = new Point();
p2.x = 4; p2.y = 3;
p2.draw(); // Peinrtrdraw{p2)r+
l p2 provides the implicit

parameter: The x and y in
draw() are those of the
object referenced by p2.

Qutline

A Defining classes
- Data encapsulation (struct)

- Data+behavior encapsulation
- instance methods
— constructors

Initializing objects

Q Currently it takes 3 lines to create a Point and
initialize it:

Point p = new Point () ;
p.-x = 3;
pP.y = 8; // tedious (ZHEK)

O We'd rather specify the fields' initial values at
the start:

Point p = new Point (3, 8); // better!

- We are able to do this with most types of objects in
Java.

Constructors

O constructor: a special method to initialize the state of new
objects.

public type (parameters) ({
statements;
}

1. runs when the client uses the new keyword
2. no return type should be specified:;
it implicitly "returns" the new object being created

3. If aclass has no constructor, Java gives it a default

constructor with no parameters that sets all fields to zero-
equivalent values.

Constructor example

public class Point {
int x;
int y;

// Constructs a Point at the given x/y location.
public Point(int initialX, int initialY) {

X = initialX;

Yy = initialyY;

public voild translate(int dx, int dy) {
X = X + dx;
y =y + dy;

Client (User) code

public class PointMain3 {
public static void main(String[] args) {
// create two Point objects
Point pl = new Point (5, 2);
Point p2 = new Point (4, 3);

// print each point
System.out.println("pl: (" + pl.x + ", " + pl.y + ™)");
System.out.println("p2: (" + p2.x + ", " + p2.y + ")");

// move p2 and then print it again
p2.translate (2, 4);
System.out.println("p2: (" + p2.x + ", "+ p2.y + ")");

Multiple Constructors

Q A class can have multiple constructors.

- Each one must accept a unique set of parameters (same
rule of method overloading).

10

Common Constructor Issues

1. By accidentally giving the constructor a return type.

Not a constructor, but a method named Point

2. Declare a local variable with the same name as a field.

Rather than storing value into the field, the param is passed to
local variable. The field remains O.

public void Point (int i1nitialX,

}

X
Y

initialX;
initialY;

public class Point {
int x;
int y;

public Point (int initialX,

}

int x
int vy

initialX;
initialY;

int initialyY)

int initialY)

{

{

11

Common Constructor Issues

O “shadowing”: 2 variables with same name in same scope.
Normally illegal, except when one variable is a field

public class Point {
int x;
int y;

public Point (int x, 1int y) {

System.out.println(“x = “ + x);// para x

}

In most of the class, x and v refer to the fields.

In Point (int x, int v), x and y refer to the method's
parameters.

12

The this keyword: Access

__Fields/Methods within Class

a this : Refers to the implicit parameter inside

your class.
(a variable that stores the object on which a method is called)

- Refer to a field: this.field

. Call a method: this.method (parameters) ;

13

To refer to the data field x: this.x
To refer to the parameter x: x

public class Point {
int x;
int y;

public Point (int x, 1int y) {
this.x = x;
this.y = y;

}

public voild setLocation(int x,
this.x = x;
this.y = y;

Fixing "Shadowing” with this

int y)

14

Calling another constructor

public class Point {
private 1int x;
private int vy,

public Point () {
this (0, ; // calls (x, y) constructor

}

public Point (int %X, int’y) {
this.x X;
this.y y;

* Avoids redundancy between constructors

* Only a constructor (not a method) can call another
constructor

15

Summary: Class Definition Components

d Variables

- fields (instance variables per object)
- static variables (shared by all objects)

d Methods

- static methods (method usable with or without
objects)
- Can access only static variables

- instance methods (can be used only on objects;
can access both static and instance variables)
- Constructors
- Accessors (do not change object state)
* Mutators (modify object state)

16

Qutline

d Admin and recap

A Defining classes
o Data encapsulation (struct)
o Data+behavior encapsulation (OOP)
> OOP desigh methodology

17

Example:

Procedural vs OOP Design

Function-oriented Object-oriented
public class DrawRocket{ public class RocketDrawing{
public static void main (String args|[]) {
for (int size = 3; size < 10; sizet++) {

public static void main (String args|[])
for (int size = 3; size < 10; size++

drawRocket (size) ;

{
) {

public static void drawRocket (int scale) {
printCap (scale);

public static void printCap (int scale) {

Rocket curRocket = new Rocket (size) ;
curRocket.draw() ;

}

public class Rocket{
public int rocketSize;

public Rocket (int rocketSize) {
this.rocketSize = rocketSize;

}

public void draw () {
printCap();

}

public void printCap () {

18

Recap: Design and Implementation
Methodology: Procedural Based

A Design (goal oriented)

- Top-down stepwise goal-driven
method decomposu’non G0AL
- methods designed are those f&‘ b
needed for the current goal | S p—

. verb driven

dProgram implementation and testing
- bottom-up

19

Design and Implementation

Methodology: Object-Oriented

a Design

- Identify objects that are part of the problem
domain or solution
* Each object has state (variables)
» Each object has behaviors (methods)

- Often do not consider one specific goal, but
rather a context (problem domain), to lead to
more reusable, extensible software

- noun driven

20

Example: The Ba1l1l Class

0 WedefineaBall class o model self-bouncing balls

860 Standard Draw

21

The Ball Class

O Design questions:

State: what field(s) do we need to represent the state of a self-
bouncing ball?

rx, ry, current position

radius: radius

VX, VY, speed

color, current color

left, right, bottom, top: cage (boundaries)

Behaviors/operations: what are some common behaviors of a self-
bouncing ball?

A default constructor, to set up a random ball in unit square
A constructor, to set up a ball with given parameters

A move method, to update position
A draw method, to display

See Ball.java, BouncingBalls. java

22

Bouncing Ball in Unit Square

An Array of Objects

ATt is common that we create an array of objects
Use new to invoke constructor and create each one.

create and initialize
N objects

animation loop

24

Qutline

d Admin and recap

A Defining classes
o Data encapsulation (struct)
o Data+behavior encapsulation (OOP)
o OOP desigh methodology
o Objects and reference semantics

25

Object References

QO Recall: non-primitive variables store references
O Reference: essentially machine address (pointer).

main memory
(64-bit machine)

Object References

QO Recall: non-primitive variables store references

0 Reference: essentially machine address (poin‘rer) I'X
101 0.50
ry

103 0.01
bl .move() ; 100 —— vy
bl .move() ; 104 radiu
105 0

Ball b2 = new Ball() ;

106
b2 .move () ;

107

b2 = bl; 108

b2 .move () ; B~

110
111

o O O O o o o

112

main memory
(64-bit machine)

Object References

QO Recall: non-primitive variables store references

0 Reference: essentially machine address (pointer).[0.3
101 0.51
ry
102 0.05
bl VX
Ball bl = new Ball() ; - 103 0.01
Cplmevens 10— N
bl .move() ; 104 0.03 radiu
105 0
Ball b2 = new Ball() ; 106 0
b2 .move () ;
107 0
b2 = bl; 108 0
b2 .move () ;
109 0
110 0
111 0
112 0
registers main memory

(64-bit machine)

Object References

QO Recall: non-primitive variables store references

0 Reference: essentially machine address (pointer).[mf"
101

102 0.05 VX
Ball bl = new Ball(); 103 0.01
° vy

bl .move () ; 100
104 0.03 radiu

105 0
106

107

b2 = bl; 108
b2 .move () ;

Ball b2 = new Ball() ;
b2 .move() ;

109
110

111

©O O O O o o o

112

registers main memory
(64-bit machine)

Object References

QO Recall: non-primitive variables store references
100 .60

O Reference: essentially machine address (pointer). 0.60 rx
101 0.52 ry
102 0.05
bl VX
Ball bl = new Ball() ; - 103 0.01
bl .move() ; 100 —— : vy
bl .move() ; 104 0.03 radiu
105 0
~ Ball b2 = new Ball(); EN 106 o

b2 .move () ;
107 — 107

b2 = bl,‘ 108

b2 .move () ; I~

110
111

112

registers main memory
(64-bit machine)

Object References

Q Recall: non-primitive variables store references

100 .60

O Reference: essentially machine address (pointer). 0
101 0.52
102 0.05
Ball bl = new Ball() ; 103 0.01
bl .move() ; 100 ——
bl .move() ; 104 0.03
105 0
Ball b2 = new Ball() ; m
106 0
107 s 107
b2 = bl,‘ 108
b2 .move () ; m
109 0.07
110 0.04
111 0.04
112 0
registers main memory

(64-bit machine)

5 < =

=

radiu

S

<

VX

vy

radiu

Object References

Q Recall: non-primitive variables store references
O Reference: essentially machine address (pointer).

Ball bl = new Ball();
bl .move () ;
bl .move () ;

Ball b2 = new Ball() ;
b2 .move() ;

b2 .move () ;

Data stored in 107 — 111 for bit recycler
(garbage collection).

100

100

registers

—>
—— 100

101
102

103
104

105
106

107
108

109
110

111
112

0
0
0
0
0
0
0

.60

.52
.05

.01
.03

main memory
(64-bit machine)

5 < =

=

radiu

2 <2 R

>

radiu

Object References

Q Recall: non-primitive variables store references
O Reference: essentially machine address (pointer).

Ball bl = new Ball();
bl .move () ;
bl .move () ;

Ball b2 = new Ball() ;
b2 .move() ;

b2 = bl;

Moving b2 also moves b1l since they are aliases that
reference the same object.

100

100

registers

101
102

103
104

105
106

107
108

109
110

111
112

—>
GOV 0.65 P

0.53

0.
.01

O O O O O o o o o o

main memory
(64-bit machine)

05

.03

.57

.54

.07
.04

.04

ry

VX

vy

radiu

2 <2 R

radiu

Qutline

d Admin and recap
A Defining classes

O

O

O

O

O

Data encapsulation (struct)
Data+behavior encapsulation (OOP)
OOP desigh methodology

Objects and reference semantics
OOP designh examples

34

Design and Implementation

Methodology: Object-Oriented

a Design

- Identify objects that are part of the problem
domain or solution
 Each object has state (variables)
 Each object has behaviors (methods)

e Constructors, accessors, mutators(ﬂ%ﬂﬂﬁg)

- Often do not consider one specific goal, but
rather a context

- noun driven

35

Example: The BankAccount Class

O We define an BankAccount class to model a bank account

0 Design questions:
State: what field(s) do we need to represent the state of a bank acct?
« acctNumber,an integer
* acctName, a string
* balance, aninteger

Behaviors/operations: what are some common behaviors of a bank
account in a simple banking context?

A constructor, to set up the object

Accessors
— agetBalance method, to return balance
— a toString method, to return a string description of the current state

Mutators
— awithdraw method, to withdraw from the account
— adeposit method, to deposit into the account
— aaddInterest method, to add interest

See BankAccount.java, Transactions.java
36

Example: Account and Transactions

public class BankAccount { public static void main (String[] args) {
final double RATE = 0.035; BankAccount aliceAcct =
long acctNumber:; new BankAccount (“Alice", 11111, 100.00);
String acctName;
double balance; BankAccount bobAcct =

, , new BankAccount (“Bob", 22222, 200.00);
public BankAccount (String owner, long

account, double initial) {

acctName = owner: BankAccount charlesAcct =
acctNumber = account: new BankAccount (“Charles", 33333, 300.00)
balance = initial;

} bobAcct.deposit (30.00);

public double deposit (double amount) {

if (amount >))
alance = balance + amount;

return balance;

}

37

Example: The Three BankAccount

Objiects in Transactions

aliceAcct: BankAccount

aliceAcct: BankAccount

acctNumber = 11111
acctName = “Alice”
balance = 100.00

acctNumber = 11111
acctName = “Alice”
balance = 100.00

bobAcct: BankAccount

bobAcct: BankAccount

acctNumber = 22222
acctName = “Bob”
balance = 200.00

acctNumber = 22222
acctName = “Bob”
balance = 230.00

charlesAcct: BankAccount

charlesAcct: BankAccount

acctNumber = 33333
acctName = “Charles”
balance = 300.00

acctNumber = 33333
acctName = “Charles”
balance = 300.00

After bobAcct.deposit (30.00);

38

Qutline

d Admin and recap

A Defining classes
o Data encapsulation (struct)
o Data+behavior encapsulation (OOP)
o OOP desigh methodology
o Objects and reference semantics
o Simple examples
o The encapsulation($12£) principle

39

Two Views of an Object

dYou can take one of two views of an object:

- external (API) - the interaction of the object
with its users

- internal (implementation) - the structure of
its data, the algorithms used by its methods

40

The Encapsulation Principle

Client can see only
the external API
(state and behaviors)

G
Client EEEEp C
G

Client should not see
the internal state or
behaviors

Methods

P

Data/state

41

Encapsulation Analogy

Registor
Here

Implementation

client needs to know
how to use API

implementation needs to know
what API to implement

Encapsulation Analogy

d As a client, you don't understand the inner
details of iPhone, and you don't need to.

0 Apple does not want to commit to any
internal details so that Apple can
continuously update the internal

TRV}

eme

TO Ro4 RE3
AL D i 2%
el “

1/ - qm _
qQn MY 2NBM4
AMP

A310
/ m .
Add Me oSG

Resistor voltage
Here Here

Why Encapsulating Data

QO Consistency: prevent "reach in" and directly alter
object's state

Protect object from unwanted access
»+ Example: BankAccount balance.

Maintain state invariants
» Example: Only allow BankAccounts with non-negative balance.
* Example: Only allow Dates with a month from 1-12.

Q Flexibility: internally modify state without
worrying about breaking others’ code

Example: Point could be rewritten in polar, clients will not see
difference. }

Accomplish Encapsulation:

Access Modifiers

a In Java, we accomplish encapsulation through the

it e)

appropriate use of access modifiers(f&IMFF

Q An access modifier is a Java reserved word that
specifies the accessibility of a method, data field,
or class

- we will discuss two access modifiers: public, private

- we will discuss the other modifier (protected) later

45

The public and private Access Modifiers

= access modifiers enforce encapsulation

- public members (data and methods): can be accessed
from anywhere

private members: can be accessed from a method
defined in the same class

Members without an access modifier: default private
accessibility,

46

Using Access Modifiers to
Implement Encapsulation: Methods

QOnly service methods should be made
public

A Support or helper methods created
simply to assist service methods
should be declared private

47

The Effects of Public and Private Accessibility

public private

variables

methods

48

Examples: Set the Access Modifiers

a Coin

3 Ball

d BankAccount

d Point

49

Class Diagram

Coin

- face : int

+ flip() : void
+ isHeads() : boolean
+ toString() : String

class name

attributes

methods

Above 1s a class diagram representing the Coin class.

“-" indicates private data or method
“+” indicates public data or method

50

Qutline

A Defining classes
o Motivation and basic syntax
o Simple examples
o The encapsulation principle

o OOP analysis examples
o Random objects vs Math.random

51

Static Math.random () method

\AS)
Random Objects

52

Recall: Math.random ()

dpublic static double random/()
- Returns a random number between O and 1

a Since computer is deterministic (given the
same input parameter, gives the same
output), how can Math.random () returna

different number each time?

53

A Little Peek into Random
Number Generation

O The random numbers generated by Java are
actually pseudo-random numbers

THE CLASSIC WORK
Y UPD B N f

Q Sup][)ose you get a random number R, the The Art of
next time you call it to get R ,,, it returns: Computer

Programming

R ., = (R, * 25214903917 + 11) (mod m) s hE L
it then converts to the right range toyou! ™

DONALD E. KNUTH

Q This method is proposed by D. H. Lehmer

- in mathematical jargon, Java uses a type of linear
congruential pseudorandom number generator

A Implication: the previously returned
random number must be remembered

- random method need to have memory (state)

54

The Random class

0 OOP design is perfect for implementing random
numbers: a Random object has

a state variable

a next method: computes next state based on current state,
returns the new state

Q Class Random is found in the java.util package.

import java.util.Random;

Method name Description

Random (long seed) | Create a random number using a seed (R;)

Random () Create a random number using a seed derived
from time

setSeed (seed) Initialize the random number generator

nextInt (<mMax>) Returns a random integer in the range [0, max)

in other words, 0 to max-1 inclusive

nextDouble () Returns a random real number in [0.0, 1.0)

Using Random Number Ob jects

Random rand = new Random(); // Default, seed by time

get a random number from O to 9 inclusive:
int n = rand.nextInt (10); // 0-9

get a random number from 1 to 20 inclusive

int n = rand.nextInt(20) + 1; // 1-20 inclusive

get a random number in arbitrary range [min, max] inclusive:
int n = rand.nextInt (<size of range>) + <min>

* where <size of range> is (<max> - <min> + 1)

How May Math.random () be
Implemented Directly?

public class Math {
private static int R = 0;

public static double random() {
R = R * 25214903917 + 11;
// result = convert to the right range
return result;

57

How May Math.random () be

Implemented using Random class?

A static variable,
also called a
singleton(E2451).

\

public class Math {

private static Random rand;

public static double random()
if (rand == null)
rand = new Random() ;
return rand.nextDouble() ;

A delegation (F¥E)
implementation
pattern.

58

Advantage and Issue of Using
Math.random ()

d Advantage
- Hide object-oriented programming, simplifying
programming (shorter program, no need to know
seeds)

a Disadvantage

- Without the ability to realize and control the
state of the random variable

» In testing, we want to repeat the same sequence of
random numbers, but the Math.random design cannot
provide this capability.

59

Qutline

d Admin and recap

A Defining classes
o Motivation and basic syntax
o Simple examples
o The encapsulation principle
o Object examples
o Random objects vs Math.random

a Object-oriented analysis

60

Discussion

a A quite helpful tool in OO analysis is object
relationship analysis. What are some basic
object relationships?

61

Qutline

d Admin and recap

A Defining classes
o Motivation and basic syntax
o Simple examples
o The encapsulation principle
o Object examples
o Random objects vs Math.random

0 Object-oriented analysis
> Composition (has)/association relationship

62

Domain: Data Visualization

“If I can't picture it, I can't

understand it.

— Albert Einstein

Edward Tufte (3

I

A1TFZK) Create

charts with hig da’ra density that tell

the truth.

63

Domain: Visualization

-

of Geographical Regions

Example Use Cases

1 GeoMap.java
a RandomColorMap.java
0 RedBlueMap.java

A ClickColorMap.java

Example Domain: Visualization

-

of Geographical Regions

Classes and their relationships?

Major Classes and Relationship

1 m | m 2
GeoMap «p— Region Color

1

A composition

relationship 1 An association

Pol ygon relationship

1
m

Point POlngn g;ﬂﬁz

67

Major Classes and Relationship

GeoMap
Region e Region
String Color Color Polygon

N

Point . Point

68

Major Classes and Relationship

1 m
GeoMap «@@—— Region

1
A composition
relationship 1
Polygon
1

Design question:
- What is the basic m
controller structure?

Point

2
Color

An association
relationship

69

Coloring Controller Structure

O Retrieve(fu %) region (standard)
- Batch: retrieve a list containing all regions

- Specific: retrieve one specific region (e.g., the one
being clicked)

A Coloring (customized)
- Map properties of each region to acolor

- 5

70

Major Classes and Relationship

1 m
GeoMap «@@—— Region

1
A composition
relationship 1
Polygon
1
Discussion:
- Public methods (API) m

of Point for the |
domain Poilnt

2
Color

An association
relationship

71

Major Classes and Relationship

1 m
GeoMap «@@—— Region

1
A composition
relationship 1
Polygon
/ 1
Discussion:
- Public methods (API) m

of Polygon for the |
domain Point

2
Color

An association
relationship

72

Major Classes and Relationship

1 m | m 2
GeoMap «p— Region Color
1
A composition
relationship 1 An association
Pol ygon relationship
1
Discussion:
- Public methods (API) m
of Region

Point

Q: Should Region have a
method that returns its

R eg | on internal Polygon?

public class Region {
private final String regionName; // name of region
private final String mapName;
private final Polygon poly; // polygonal boundary
private Color fillColor, drawColor;

public Region (String mName, String rName, Polygon poly) {

regionName = rName;

HEJINENTS S HINENTRS is in Polygon, Polygon is not
this.poly = poly; exposed. Region delegates (
setDefaultColor() ; Z+E) tasks internally to

} Polygon.

Even though most complexity

public void setDrawColor (Color c) { drawColor =
public void draw() { setDrawColor(); pol
public void £ill() { .. }
public boolean contains (Poi
return poly.contains%p) ;

}

public Point centroid() { return poly.centroid() }

Example Controllers

1 GeoMap.java

d RandomColorMap.java
A ClickColorMap.java

1 RedBlueMap.java

76

Cartograms

ad Cartogram. Area of state proportional to
number of electoral votes.

Michael Gastner, Cosma Shalizi, and Mark Newman
http://www-personal.umich.edu/~mejn/election/2016/

77

Cartograms

Qd Cartogram. Area of country proportional
to population.

78

Qutline

d Admin and recap
A Defining classes

0 Object-oriented design

o Composition (has)/association relationship and geo
visualization

> Inheritance(4£7) relationship

79

Tnheritance

O Inheritance: Reuse classes by deriving a new class from

an existing one

- The existing class is called the parent class, or superclass, or
base class

- The derived class is called the child class or subclass.

0 As the name implies, the child inherits characteristics
of the parent

- The child class inherits every method and every data field
defined for the parent class

80

Visualize Inheritance

O The child class inherits all methods and data
defined for the parent class

- an animal object
Animal

weight = 120

- weight : int getWeight()

+ getWeight() : int

/\
a bird object
Bird weight = 100
- flySpeed : int flySpeed = 30
getWeight()
fly()

+ fly() : void

81

	Default Section
	Slide 1: Introduction to Computational Thinking

	OOP
	Slide 2: Recap: Class, Object, Variable, Field
	Slide 3: Recap: Static Method vs Instance Method
	Slide 4: Recap: Defining Related Method and Data in the Same Class: Instance Method
	Slide 5: Outline
	Slide 6: Initializing objects
	Slide 7: Constructors
	Slide 8: Constructor example
	Slide 9: Client (User) code
	Slide 10: Multiple Constructors
	Slide 11: Common Constructor Issues
	Slide 12: Common Constructor Issues
	Slide 13: The this keyword: Access Fields/Methods within Class
	Slide 14: Fixing “Shadowing” with this
	Slide 15: Calling another constructor
	Slide 16: Summary: Class Definition Components

	OOP design and analysis
	Slide 17
	Slide 18: Example: Procedural vs OOP Design
	Slide 19: Recap: Design and Implementation Methodology: Procedural Based
	Slide 20: Design and Implementation Methodology: Object-Oriented
	Slide 21: Example: The Ball Class
	Slide 22: The Ball Class
	Slide 23: Bouncing Ball in Unit Square
	Slide 24: An Array of Objects
	Slide 25
	Slide 26: Object References
	Slide 27: Object References
	Slide 28: Object References
	Slide 29: Object References
	Slide 30: Object References
	Slide 31: Object References
	Slide 32: Object References
	Slide 33: Object References
	Slide 34
	Slide 35: Design and Implementation Methodology: Object-Oriented
	Slide 36: Example: The BankAccount Class
	Slide 37: Example: Account and Transactions
	Slide 38: Example: The Three BankAccount Objects in Transactions
	Slide 39
	Slide 40: Two Views of an Object
	Slide 41: The Encapsulation Principle
	Slide 42: Encapsulation Analogy
	Slide 43: Encapsulation Analogy
	Slide 44: Why Encapsulating Data
	Slide 45: Accomplish Encapsulation: Access Modifiers
	Slide 46: The public and private Access Modifiers
	Slide 47: Using Access Modifiers to Implement Encapsulation: Methods
	Slide 48: The Effects of Public and Private Accessibility
	Slide 49: Examples: Set the Access Modifiers
	Slide 50: Class Diagram

	OOP examples
	Slide 51
	Slide 52: Static Math.random() method vs Random Objects
	Slide 53: Recall: Math.random()
	Slide 54: A Little Peek into Random Number Generation
	Slide 55: The Random class
	Slide 56: Using Random Number Objects
	Slide 57: How May Math.random()be Implemented Directly?
	Slide 58: How May Math.random()be Implemented using Random class?
	Slide 59: Advantage and Issue of Using Math.random()

	Class relationship: Composition, association, inheritance
	Slide 60
	Slide 61
	Slide 62
	Slide 63: Domain: Data Visualization
	Slide 64: Domain: Visualization of Geographical Regions
	Slide 65: Example Use Cases
	Slide 66: Example Domain: Visualization of Geographical Regions
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73: Polygon
	Slide 74
	Slide 75: Region
	Slide 76: Example Controllers
	Slide 77: Cartograms
	Slide 78: Cartograms
	Slide 79
	Slide 80: Inheritance
	Slide 81: Visualize Inheritance

