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Introduction: Mathematical Programming

min f(x),
X
X €R™,f:R" > R

* Conventional Algorithm: Human-Designed

Convex? —
Problem Atypical problem?E.g. LP, QP, SDP?

Analysis Strongly convex? .5
Smooth? Expensive”

L-smooth? _ Just L20

Analytical solvable? E.g. first-order condition. (Learn to Optimize)
Convertible? E.g. KKT conditions.
Numerical Algorithm? E.g., gradient descent.

Algorithm
Design

* Picture from Google



L20: Predict Solution by Machine Learning

e 20 Architecture

[ML/DL ModelJ + [ Training }

e |20 Workflow

x{ € N(0,1), f(x?)

Information of Objective Minimizer



Success of L20 in Different Scenarios

e Applications of L20

* Computer Networks _
* Routing: ICLR 19, TNSE 20, CVPR 20, etc.
* Resource Allocation:
ISP 18, JSAC 21, TWC 23, INFOCOM 24, etc.

e Finance

+ Decision Making: TNNLS 16, [JCAI 21, etc. |~ Optimality.
+ Transportation Convergence/Efficiency [1].

* Path Planning: TITS 22, TNNLS 24, etc.

e Mathematical Solver:

ICLR 19, ICML 23, CVPR 24, etc.
Others: Math Benchmark of LLM. _




Introduction: Optimization and L20

* Scenarios: General Optimization Problems

* Learning to Optimize (L20) Architecture:
* Unrolling (Math-L20 [Liu et al., ICML 2023])

Gradient t+1
d .
S Descent xl

step size

* Problem Definition: Quadratic Programming
min f(x),x € R™
X

* f:R™ - R, quadratic.
* fis convex and smooth.



Analysis: Training V.S. Unrolling

* Optimization (Unrolling) Steps v.s. Training lterations
. Optlmlzatlon Steps Unrolllng process) xt 1 ™ X¢.
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* Training Iterations: Stable T, f(x£~ 1) = f(xX).

* Optimization is orthogonal to training.
1. Can we have convergence of Unrolling-L20 from training?



* Objective by 7100 steps, by 400 training iterations

Math-L20 [Liu et al., ICML 2023]
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LISTA-CPSS [Chen et al., NeurIPS
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* Longer optimization (unrolling) steps require smaller learning rates.
 Larger learning rates improve convergence.

There is no guarantee that training will always converge.
Motivate our rigorous L20 convergence proof of training.



Existing Theoretical Convergence Proofs

* Rely on Strict Assumptions

* LISTA-CPSS [Chen et al., NeurlPS 2018]
« Sequence converges to optimum in a fixed direction: sign(X,) = sign(X™).
* Learnable matrix is (semi-)orthogonal to coefficient matrix in objective:
W/'M; =1and W;'M; > 1forallj # i.

* Violated by Real Training
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Non-Trivial Unrolling-L20 Convergence Proof?

* A Novel Convergence Demonstration Methodology for Math-L20 (Unrolling
L20)

* Main Design:
1. L20O Convergence Construction

Convergence alignment between training and optimization.
(NOTE: Training is orthogonal to optimization process in Unrolling L20.)

2. Training Convergence Demonstration.
Neural Tangent Kernel Theorem.

3. Deterministic Initialization Method.

Initialize NN to achieve alignment.
Ensure training converge.
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Design Part-l: L20O Convergence Construction

* Align Upper Bound of L20 Training to Lower Bound of Gradient Descent.

1. General Convergence Rate of L20 Training:
* k:training iteration, t: optimization step.
F(XE) < nlcXD), X8 = 1204,/ (Xo)
Some Cons‘:c';nt Mapping
2. Convergence Rate of Gradient Descent:

Fxf) < G llxg - x|

2

3. Alignment: Let c(x9) = F(x®), F(x§) < n E||x§ — x|

4. Given constant intial point that X0 = X%, convergence rate (at step T) of L20:

F(xk) < B |xk - x|

Requirement: Demonstrate the convergence rate of L20 Training.
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Design Part-ll: Training Convergence Demonstration

* We prove it by Neural Tangent Kernel Theorem.
* NN training: Gradient descent.
* L-1layeris wide: More neuron than training samples.

1. Gradient of NN Layers: By chain rule, similar to BPTT (Sec. 5.1.4, Page 86)
2. NN’s outputs in L20 are upper-bounded by inputs (Lemma 5.3.6, Theorem 5.3.7, Page 96-97)
Help us manipulate output of NN by the given inputs.

3. Gradientis Upper-Bounded by Objective (Theorem 5.3.11, page 98)
Help us derive bounding target (F(X2)) from NN’s gradient of training.

4. L20is ASemi-Smooth to Its Parameters (Theorem 5.3.13, page 99)
Help us bound dynamic of sequence with dynamic of training parameters (gradient + learning rate).

5. Linear Convergence of L20 Training (Theorem 5.3.15, page 99-100)
Conditions:
1. L-1 layer’s singular value is lower-bounded by non-negative constants.
2. Learning rate is upper-bounded by L-1 layer’s singular value.
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Design Part-lll: Deterministic Initialization Method

1. Hold the conditions for linear training convergence rate.
2. Achieve convergence alignment.

1. L20 generates step sizes of vanilla GD (alighment).

Let parameter matrix of last layer to be 0 + 2 Sigmoid activation.

2. Positive Singular Value
* Non-Zero: Random generated thin matrix (transposed fat).
* Positive: QR-decomposition + absolute operation.

3. Enlarge Singular Value: Hold the Conditions of Linear Rate
* Enlarge all entries of parameter matrices by a positive constant.
* Proper positive constants: Lemmas 5.4.1-5.4.4 (pages 113-114).

13



* Problem scale: Quadratic Programming, 512*400

* SOTA Unrolling:

* Math-L20O [Liu etal., ICML 2023]
* LISTA-CPSS [Chen et al., NeurlPS 2018]
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* Allconverge
* Robust to learning rate

14




Empirical Evaluation:

Ablation for Initialization and Learning Rate

* Small Scale: QP 32*25.

Learning Rate Ablation Initialization Ablation
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* IfLRissmall enough, increasing * |Increases singular value
LR improves convergence Improves convergence
* IfLRistoo large, convergence
deteriorates.
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Thank You! Ik
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Project at https://github.com/NetX-lab/MathL20Proof-Official
Paper Code
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Opening!

We have:
1. Clear goal: Extend this work to a more general case.
2. Enough GPUs (for this project): 3090*4.

We hope you are:
1. Interested in this project.
2. Good at Math (e.g., Math Competitions...)

If you are interested, drop me an email (gingyusong@xmu.edu.cn) or a WeChat message. 16
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