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Introduction: AI for Science

基于符号逻辑的
开普勒猜想证明

[Forum of Mathematics]

AlphaFold
蛋白质预测

[Nature]

基于大模型的
病理学成像评估

[Nature]
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• Conventional Algorithm: Human-Designed

𝑚𝑖𝑛
𝑥

 𝑓 𝑥 ,

𝑥 ∈ 𝑅𝑛 
, 𝑓: 𝑅𝑛 → 𝑅

Problem 
Analysis

Convex?
A typical problem? E.g. LP, QP, SDP?
Strongly convex?

Smooth?
L-smooth?

Analytical solvable? E.g. first-order condition.
Convertible? E.g. KKT conditions.
Numerical Algorithm? E.g., gradient descent.

Algorithm 
Design

* Picture from Google

*

Just L2O
(Learn to Optimize)

Expensive?

Introduction: Mathematical Programming
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• L2O Architecture

• L2O Workflow

ML/DL Model Training+

𝑥𝑖
0 ∈ 𝑁 0,1 , 𝑓 𝑥𝑖

0
𝑥𝑖

∗

Information of Objective Minimizer

L2O: Predict Solution by Machine Learning
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• Computer Networks
• Routing: ICLR 19, TNSE 20, CVPR 20, etc.
• Resource Allocation: 

TSP 18, JSAC 21, TWC 23, INFOCOM 24, etc.
• Finance

• Decision Making: TNNLS 16, IJCAI 21, etc.
• Transportation

• Path Planning: TITS 22, TNNLS 24, etc.
• Mathematical Solver: 

ICLR 19, ICML 23, CVPR 24, etc.
Others: Math Benchmark of LLM.

Optimality.

Convergence/Efficiency [1].

• Applications of L2O

Success of L2O in Different Scenarios
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• Scenarios: General Optimization Problems
• Learning to Optimize (L2O) Architecture:

• Unrolling (Math-L2O [Liu et al., ICML 2023])

• Problem Definition: Quadratic Programming
𝑚𝑖𝑛

𝑥
 𝑓 𝑥 , 𝑥 ∈ 𝑅𝑛 

• 𝑓: 𝑅𝑛 → 𝑅, quadratic.
• 𝑓 is convex and smooth.

𝑥𝑖
𝑡 , ∇𝑓 𝑥𝑖

𝑡 𝑠

step size

Gradient
Descent 𝑥𝑖

𝑡+1

Introduction: Optimization and L2O
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• Optimization (Unrolling) Steps v.s. Training Iterations
• Optimization Steps (Unrolling process): 𝑥𝑡−1 → 𝑥𝑡.

• Optimization is orthogonal to training.
1. Can we have convergence of Unrolling-L2O from training?

• Training Iterations: Stable 𝑇, 𝑓(𝑥𝑇
𝑘−1) → 𝑓(𝑥𝑇

𝑘).
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Analysis: Training V.S. Unrolling
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• Objective by 100 steps, by 400 training iterations

There is no guarantee that training will always converge.
 Motivate our rigorous L2O convergence proof of training.

Math-L2O [Liu et al., ICML 2023] LISTA-CPSS [Chen et al., NeurIPS 
2018]Non-Convergence by Exploding

Non-Convergence by Exploding

• Longer optimization (unrolling) steps require smaller learning rates.

• Larger learning rates improve convergence.
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Convergence with Different Unrolling Steps
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• Rely on Strict Assumptions
• LISTA-CPSS [Chen et al., NeurIPS 2018]

• Sequence converges to optimum in a fixed direction: sign 𝑋𝑡 = sign 𝑋∗ .

• Learnable matrix is (semi-)orthogonal to coefficient matrix in objective:
 𝐖𝑖

⊤𝐌𝑖 = 1 and 𝐖𝑖
⊤𝐌𝑗 > 1 for all 𝑗 ≠ 𝑖.

• Violated by Real Training

Existing Theoretical Convergence Proofs
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• Main Design:
1. L2O Convergence Construction

Convergence alignment between training and optimization.
(NOTE: Training is orthogonal to optimization process in Unrolling L2O.)

2. Training Convergence Demonstration.
Neural Tangent Kernel Theorem.

3. Deterministic Initialization Method.
 Initialize NN to achieve alignment.
 Ensure training converge.

• A Novel Convergence Demonstration Methodology for Math-L2O (Unrolling 
L2O)

Non-Trivial Unrolling-L2O Convergence Proof?
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1. General Convergence Rate of L2O Training:
• k: training iteration, t: optimization step.

𝐹 𝑋𝑇
𝑘 ≤ 𝑟𝑘𝐶 𝑋𝑇

0 , 𝑋𝑇
0 = L2O𝑊[𝐿]

𝑋0

2. Convergence Rate of Gradient Descent:
𝐹 𝑋𝑇

0 ≤
𝛽

𝑇
𝑋0

0 − 𝑋∗
2

2

3. Alignment: Let 𝐶 𝑋𝑇
0 = 𝐹 𝑋𝑇

0 , 𝐹 𝑋𝑇
𝑘 ≤ 𝑟𝑘

𝛽

𝑇
𝑋0

0 − 𝑋∗
2

2

4. Given constant intial point that 𝑋0
0 = 𝑋0

𝑘, convergence rate (at step T) of L2O:
𝐹 𝑋𝑇

𝑘 ≤ 𝑟𝑘

𝛽

𝑇
𝑋0

𝑘 − 𝑋∗
2

2

• Align Upper Bound of L2O Training to Lower Bound of Gradient Descent.

Some Constant Mapping

Requirement: Demonstrate the convergence rate of L2O Training.
9

Design Part-I: L2O Convergence Construction
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1. Gradient of NN Layers: By chain rule, similar to BPTT (Sec. 5.1.4, Page 86)
2. NN’s outputs in L2O are upper-bounded by inputs (Lemma 5.3.6, Theorem 5.3.7, Page 96-97)

Help us manipulate output of NN by the given inputs.
3. Gradient is Upper-Bounded by Objective (Theorem 5.3.11, page 98)

Help us derive bounding target (𝐹 𝑋𝑇
0 ) from NN’s gradient of training.

4. L2O is A Semi-Smooth to Its Parameters (Theorem 5.3.13, page 99)
Help us bound dynamic of sequence with dynamic of training parameters (gradient + learning rate).

5. Linear Convergence of L2O Training (Theorem 5.3.15, page 99-100)
Conditions:
1. L-1 layer’s singular value is lower-bounded by non-negative constants.
2. Learning rate is upper-bounded by L-1 layer’s singular value.

• We prove it by Neural Tangent Kernel Theorem.
• NN training: Gradient descent.
• L-1 layer is wide: More neuron than training samples.
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Design Part-II: Training Convergence Demonstration
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1. L2O generates step sizes of vanilla GD (alignment).
 Let parameter matrix of last layer to be 𝟎 + 2 Sigmoid activation.

2. Positive Singular Value
• Non-Zero: Random generated thin matrix (transposed fat).
• Positive: QR-decomposition + absolute operation.

3. Enlarge Singular Value: Hold the Conditions of Linear Rate
• Enlarge all entries of parameter matrices by a positive constant.
• Proper positive constants： Lemmas 5.4.1-5.4.4 (pages 113-114).

1. Hold the conditions for linear training convergence rate.
2. Achieve convergence alignment.

Design Part-III: Deterministic Initialization Method
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Empirical Evaluation: Training Convergence

• Problem scale: Quadratic Programming, 512*400
• SOTA Unrolling:

• Math-L2O [Liu et al., ICML 2023]
• LISTA-CPSS [Chen et al., NeurIPS 2018]

• All converge
• Robust to learning rate
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• Small Scale: QP 32*25.

• Increases singular value
improves convergence

Initialization AblationLearning Rate Ablation

• If LR is small enough, increasing
LR improves convergence

• If LR is too large, convergence
deteriorates.

Borderline

Empirical Evaluation: 
Ablation for Initialization and Learning Rate
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Thank You!
Project at https://github.com/NetX-lab/MathL2OProof-Official

Paper Code
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Opening!
We have:

1. Clear goal: Extend this work to a more general case.
2. Enough GPUs (for this project): 3090*4.

We hope you are:
1. Interested in this project.
2. Good at Math (e.g., Math Competitions…)

If you are interested, drop me an email (qingyusong@xmu.edu.cn) or a WeChat message.

https://github.com/NetX-lab/MathL2OProof-Official
https://github.com/NetX-lab/MathL2OProof-Official
https://github.com/NetX-lab/MathL2OProof-Official
https://github.com/NetX-lab/MathL2OProof-Official
https://github.com/NetX-lab/MathL2OProof-Official
mailto:qingyusong@xmu.edu.cn
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