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Probability of an Event  rienesimon Laiac

(1749-1827)

We first study Pierre-Simon Laplace’s classical theory of probability,

which he introduced in the 18t century, when he analyzed games of
chance.

We first define these key terms:

e An experiment is a procedure that yields one of a given set of possible
outcomes.

e The sample space of the experiment is the set of possible outcomes.
e An event is a subset of the sample space.

'

Here is how Laplace defined the probability of an event:

Definition: If S is a finite sample space of equally likely outcomes, and
E is an event, that is, a subset of S, then the probability of E is

p(E) = [E[/|S].

For every event £, we have 0 < p(E) < 1. This follows directly from the
definition because 0 < p(E) = |E|/|S| < |S|/|S| < 1,since 0 < |E| =< |S]|.
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Applying Laplace’s Definition

Example: An urn contains four blue balls and five red balls.
What is the probability that a ball chosen from the urn is
blue?

Solution: The probability that the ball is chosen is 4/9
since there are nine possible outcomes, and four of these
produce a blue ball.

Example: What is the probability that when two dice are
rolled, the sum of the numbers on the two dice is 77

Solution: By the product rule there are 62 = 36 possible
outcomes. Six of these sum to 7. Hence, the probability of
obtaining a 7 is 6/36 = 1/6.



Applying Laplace’s Definition

Example: In a lottery, a player wins a large prize when they pick four digits that
match, in correct order, four digits selected by a random mechanical process.
What is the probability that a player wins the prize?

Solution: By the product rule there are 104 = 10,000 ways to pick four digits.

 Since there is only 1 way to pick the correct digits, the probability of winning
the large prize is 1/10,000 = 0.0001.

A smaller prize is won if only three digits are matched. What is the probability
that a player wins the small prize?

Solution: If exactly three digits are matched, one of the four digits must be
incorrect and the other three digits must be correct. For the digit that is
incorrect, there are 9 possible cﬁoices. Hence, by the sum rule, there a total of
36 possible ways to choose four digits that match exactly three of the winning
four digits. The probability of winning the small price is 36/10,000 = 9/2500 =
0.0036.



Applying Laplace’s Definition

Example: There are many lotteries that award prizes to
people who correctly choose a set of six numbers out of the
first n positive integers, where n is usually between 30 and
60. What is the probability that a person picks the correct
six numbers out of 407

Solution: The number of ways to choose six numbers out of
40 is
C(40,6) = 40!/(34'6!) = 3,838,380.

Hence, the probability of picking a winning combination is
1/ 3,838,380 = 0.00000026.

Can you work out the probability of winning the lottery with
the biggest prize where you live?
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Applying Laplace’s Definition

Example: What is the probability that the numbers 11, 4,
17, 39, and 23 are drawn in that order from a bin with 50
balls labeled with the numbers 1,2, ..., 50 if

a) The ball selected is not returned to the bin.

b) The ball selected is returned to the bin before the next ball
is selected.

Solution: Use the product rule in each case.

a) Sampling without replacement: The probability is
1/254 251,200 since there are 50 49 -47 -46 45 =
254,251,200 ways to choose the five balls.

b) Sampling with replacement: The probability is
1/505 = 1/312,500,000 since 50° = 312,500,000.
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and Unions of Events

Theorem 1: Let E be an event in sample space S. The
probability of the event E/ = S — E, the complementary
event of E, is given by

p(E) =1—p(E).
Proof: Using the fact that | E| = |S| — |E]|,

Enl S|—|E E
p(E)=E8 =1 =1-pE).




e Probability o ments
and Unions of Events

Example: A sequence of 10 bits is chosen randomly.
What is the probability that at least one of these bits is
0?7

Solution: Let E be the event that at least one of the 10

bits is 0. Then E is the event that all of the bits are 1s.
The size of the sample space S is 210, Hence,

o = Bl e B
p(E)—l—P(E)—l_ﬁ—l_W—l_1024_1024'




e Probability of Com
and Unions of Events

Theorem 2: Let E, and E, be events in the sample
space S. Then

p(E1 U Es) = p(E1) + p(E2) — p(E1 N Ey)

Proof: Given the inclusion-exclusion formula from
Section 2.2, |A B|=|A| + | B| — |A n B|, it follows

that
EF1UE | |E1|—|—|E2|—|E1QE2|
E\UE,) = BE
p(E1 U Ey) 5] El
_ 0 iEel B
S| S| S|

=p(E1) + p(E2) —p(E1 N E3). <



_The Probability of Comptements

and Unions of Events

Example: What is the probability that a positive
integer selected at random from the set of positive
integers not exceeding 100 is divisible by either 2 or 5?

Solution: Let E, be the event that the integer is
divisible by 2 and E, be the event that it is divisible 57?
Then the event that the integer is divisible by 2 or 5 Is
E, E,and E n E, isthe event that it is divisible by 2
and 5.

It follows that:

p(El Ez) > p(E1) + p(Ez) % p(El N Ez)
=50/100 + 20/100 - 10/100 = 3/5.



Monty Hall Puzzle

Example: You are asked to select one of the three doors to open.
There is a large prize behind one of the doors and if you select
that door, you win the prize. After you select a door, the game
show host opens one of the other doors (which he knows is not
the winning door). The prize is not behind the door and he gives
you the opportunity to switch your selection. Should you switch?

(This is a notoriously confusing problem that has been the subject of much
discussion . Do a web search to see why!)

Solution: You should switch. The probability that your initial
pick is correct is 1/3. This is the same whether or not you switch
doors. But since the game show host always opens a door that
does not have the prize, if you switch the probability of winning
will be 2/3, because you win if your initiaF ick was not the

C(}rrect door and the probability your initial pick was wrong is
2/3.

\
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Assigning Probabilities

Laplace’s definition from the previous section, assumes that
all outcomes are equally likely. Now we introduce a more
general definition of probabi?;ties that avoids this
restriction.

Let S be a sample space of an experiment with a finite
number of outcomes. We assign a probability p(s) to each
outcome s, so that:

0<p(s)<lforeachs e S

> ps)=1

sesS

The function p from the set of all outcomes of the sample
space S is called a probability distribution.



/ -
/

Assigning Probabilities

Example: What probabilities should we assign to the
outcomes H(heads) and T (tails) when a fair coin is
flipped? What probabilities should be assigned to
these outcomes when the coin is biased so that heads
comes up twice as often as tails?

Solution: For a fair coin, we have p(H) = p(T) = 2.
For a biased coin, we have p(H) = 2p(T).
Because p(H) + p(T) = 1, it follows that
2p(T) + p(T) =3p(T) = 1.
Hence, p(T) = 1/3 and p(H) = 2/3.
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Uniform Distribution

Definition: Suppose that S is a set with n elements.
The uniform distribution assigns the probability 1/n to
each element of S. (Note that we could have used
Laplace’s definition here.)

Example: Consider again the coin flipping example,
but with a fair coin. Now p(H) = p(T) = 1/2.



Probability of an Event

Definition: The probability of the event E is the sum
of the probabilities of the outcomes in F.

p(E) =) p(s)

seS

Note that now no assumption is being made about the
distribution.
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Example

Example: Suppose that a die is biased so that 3
appears twice as often as each other number, but that
the other five outcomes are equally likely. What is the
probability that an odd number appears when we roll
this die?

Solution: We want the probability of the event

E ={1,3,5}. We have p(3) = 2/7 and

p(1) =p(2) = p(4) = p(5) = p(6) = 1/7.

Hence, p(E) = p(1) + p(3) + p(5) =
1/7+2/7 +1/7 =4/7.



robabilities of Complements and

Unions of Events

Complements: p(E) =1—p(E) still holds. Since
each outcome is in either E or E , but not both,

> _p(s) =1=p(E) +p(E).

sesS

Unions: p(F1 U Ey) = p(E1) 4+ p(E2) — p(E1 N Ey)
also still holds under the new definition.




Combinations of Events

Theorem: If E, E,, ... is a sequence of pairwise disjoint
events in a sample space S, then

(s) -3

see Exercises 36 and 37 for the proof
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Conditional Probability

Definition: Let E and F be events with p(F) > 0. The conditional
probability of E given F, denoted by P(E|F), is defined as:

ENF)

p(F)

Example: A bit string of length four is generated at random so
that each of the 16 bit strings of length 4 is equally likely. What

is the probability that it contains at least two consecutive Os,
given that its first bit isa 07

Solution: Let E be the event that the bit string contains at least
two consecutive Os, and F be the event that the first bitisa O.

e Since E F={0000, 0001, 0010,0011, 0100}, p(E F)=5/16.
e Because 8 bit strings of length 4 start with a O, p(F) = 8/16= 2.

Hence, g
mBE- o b B

p(E|F) = &
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Conditional Probability

Example: What is the conditional probability that a
family with two children has two boys, given that they
have at least one boy. Assume that each of the
possibilities BB, BG, GB, and GG is equally likely where
B represents a boy and G represents a girl.

Solution: Let E be the event that the family has two
boys and let F be the event that the family has at least
one boy. Then E = {BB}, F = {BB, BG, GB}, and

E F={BB]}.
e It follows that p(F) = 3/4 and p(E F)=1/4.
Hence, p(E|F):p(EﬂF) 1

plE} 3 g
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Independence

Definition: The events E and F are independent if and only if

p(E F)=p(E)p(F).

Example: Supgose E is the event that a randomly generated bit string
of length four begins with a 1 and F is the event that this bit strin

g
contains an even number of 1s. Are E and F independent if the 16 bit
strings of length four are equally likely?

Solution: There are eight bit strings of length four that begin with a 1,
and eight bit strings of length four that contain an even number of 1s.

e Since the number of bit strings of length 4 is 16,
p(E) =p(F) =8/16 =-.

e SinceE F={1111, 1100, 1010, 1001}, p(E F)=4/16=1/4.
We conclude that E and F are independent, because

p(E F)=1/4= (%) (*2)= p(E) p(F)
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Independence

Example: Assume (as in the previous example) that
each of the four ways a family can have two children
(BB, GG, BG,GB) is equally likely. Are the events E, that
a family with two children has two boys, and F, that a
family with two children has at least one boy;,
independent?

Solution: Because E = {BB}, p(E) = 1/4. We saw
previously that that p(F) = 3/4 and p(E F)=1/4.The

events F and F are not independent since
p(E) p(F) =3/16 #1/4=p(E F).



Pairwise and Mutual Independence

Definition: The events E,, E,, ..., E,, are pairwise
independent if and only if p(E; E;) = p(E;) p(E;) forall
pairsiand jwithi<j<n.

The events are mutually independent it
e e 0 B 0l e e
whenever i;, j = 1,2,...., m, are integers with
1< <ip,<-<i,<n andm=2.



James Bernoulli
(1854 - 1705)

Bernoulli Trials

Definition: Suppose an experiment can have only two
possible outcomes, e.g., the flipping of a coin or the
random generation of a bit.
e Each performance of the experiment is called a Bernoulli trial.
e One outcome is called a success and the other a failure.
e If p is the probability of success and g the probability of
failure, thenp + g = 1.

Many problems involve determining the probability of k
successes when an experiment consists of n mutually
independent Bernoulli trials.
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Bernoulli Trials

Example: A coin is biased so that the probability of heads
is 2/3. What is the probability that exactly four heads
occur when the coin is flipped seven times?

Solution: There are 27 = 128 possible outcomes. The
number of ways four of the seven flips can be heads is
C(7,4). The probability of each of the outcomes is
(2/3)4(1/3)3 since the seven flips are independent. Hence,
the probability that exactly four heads occur is

C(7,4) (2/3)4(1/3)3 = (35-16)/ 27 = 560/ 2187.



_ Probability of k Success
Independent Bernoulli Trials.

Theorem 2: The probability of exactly k successes in n independent
Bernoulli trials, with probability of success p and probability of failure
g=1—p,is

C(n,k)pkqn—*.
Proof: The outcome of n Bernoulli trials is an n-tuple (ty,t,,....t,),
where each is t; either S (success) or F (failure). The probability of each
outcome of n trials consisting of k successes and k — 1 failures (in any

order) is pkgn—*, Because there are C(n,k) n-tuples of Ss and Fs that
contain exactly k Ss, the probability of k successes is C(n,k)pkgn—* <«

We denote by b(k:n,p) the probability of k successes in n independent
Bernoulli trials with p the probability of success. Viewed as a function
of k, b(k:n,p) is the binomial distribution. By Theorem 2,

b(k:n,p) = C(n,k)pkqn—=.
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Random Variables

Definition: A random variable is a function from the
sample space of an experiment to the set of real numbers.
That is, a random variable assigns a real number to each
possible outcome.

A random variable is a function. It is not a variable, and it is
not random!

In the late 1940s W. Feller and J.L. Doob flipped a coin to
see whether both would use “random variable” or the more
fitting “chance variable.” Unfortunately, Feller won and the
term “random variable” has been used ever since.
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Random Variables

Definition: The distribution of a random variable X on a sample
space S is the set of pairs (r, p(X =r)) forall r  X(S), where p(X =
r) is the probability that X takes the value r.

Example: Suppose that a coin is flipped three times. Let X(t) be
the random variable that equals the number of heads that appear
when t is the outcome. Then X(t) takes on the following values:

X(HHH) = 3, X(TTT) =0,

X(HHT) = X(HTH) = X(THH) = 2,

X(TTH) = X(THT) = X(HTT) = 1.

Each of the eight possible outcomes has probability 1/8. So, the
distribution of X(t) isp(X=3) =1/8, p(X = 2) = 3/8,
p(X=1)=3/8,and p(X=0) = 1/8.



The Famous Birthday Problem

The puzzle of finding the number of people needed in a room to ensure that the
probability of at least two of them having the same birthday is more than %2 has a
surprising answer, which we now find.

Solution: We assume that all birthdays are equally likely and that there are 366 days in the year. First,
we find the probability p, that at least two of n people have different birthdays.

Now, imagine the people entering the room one by one. The probability that at least two have the
same birthday is 1—p, .

e The probability that the birthday of the second person is different from that of the first is
365/366.

e The probability that the birthday of the third person is different from the other two, when these
have two different birthdays, is 364/366.

e In general, the probability that the jth person has a birthday different from the birthdays of those
already in the room, assuming that these people all have ditferent birthdays,

is (366 — (j — 1))/366 = (367 — j)/366.
« Hence, p, = (365/366)(364/366)- (367 — n)/366.
« Therefore, 1— p, = 1—(365/366)(364/366)- (367 — n)/366.

Checking various values for n with computation helg tells us that for n = 22, 1— p,, = 0.457,and for n =
23, 1— p, = 0.506. Consequently, a minimum number of 23 people are needed so that that the
probability that at least two of them have the same birthday is greater than 1/2.
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Monte Carlo Algorithms

Algorithms that make random choices at one or more steps
are called probabilistic algorithms.

Monte Carlo algorithms are probabilistic algorithms used
to answer decision problems, which are problems that
either have “true” or “false” as their answer.

e A Monte Carlo algorithm consists of a sequence of tests. For
each test the algorithm responds “true” or ‘unknown.

o If the response is “true, the algorithm terminates with the
answer is “true.”

e After running a specified sequence of tests where every step
yields “unknown’, the algorithm outputs “false.”

e The idea is that the probability of the algorithm incorrectly
outputting “false” should be very small as long as a sufficient
number of tests are performed.
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Probabilistic Primality Testing

Probabilistic primality testing (see Example 16 in text) is an example of a
Monte Carlo algorithm, which is used to find large primes to generate the
encryption keys for RSA cryptography (as discussed in Chapter 4).

» An integer n greater than 1 can be shown to be composite (i.e., not prime) if it
fails a particular test (Miller’s test), using a random integer b with 1 <b < n as
the base. But if n passes Miller’s test for a particular base b, it may either be
prime or composite. The probability that a composite integer passes n Miller’s
test is for a random b, is less that Y.

e So failing the test, isthe “true” response in a Monte Carlo algorithm, and
passing the test is “unknown.”

 If the test is performed k times (choosing a random integer b each time) and the
number n passes Miller’s test at every iteration, then the probability that it is
composite is less than (1/4)k. So for a sufficiently, large k, the probability that n
is composite even though it has passed all k iterations of Miller’s test is small.
For example, with 10 iterations, the probability that n is composite is less than 1
in 1,000,000.



