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Chapter Summary
 Introduction to Discrete Probability
 Probability Theory
 Bayes’ Theorem
 Expected Value and Variance



Section 7.1



Section Summary
 Finite Probability
 Probabilities of Complements and Unions of Events
 Probabilistic Reasoning



Probability of an Event
    We first study Pierre-Simon Laplace’s classical theory of probability, 

which he introduced in the 18th century,  when he analyzed games of 
chance.

 We first define these key terms:
 An experiment is a procedure that yields one of a given set of possible 

outcomes.
 The sample space of the experiment is the set of possible outcomes.
 An event is a subset of the sample space.

 Here is how Laplace defined the probability of an event:
     Definition: If S is a finite sample space of equally likely outcomes, and 

E is an event, that is, a subset of S, then the probability of E is                   
p(E) = |E|/|S|.

 For every event E, we have 0 ≤ p(E)  ≤ 1. This follows directly from the 
definition because 0 ≤ p(E) = |E|/|S| ≤ |S|/|S| ≤ 1, since 0 ≤ |E| ≤ |S|.

Pierre-Simon Laplace
  (1749-1827)



Applying Laplace’s Definition
   Example: An urn contains four blue balls and five red balls. 

What is the probability that a ball chosen from the urn is 
blue?

   Solution:  The probability that the ball is chosen is 4/9 
since there are nine possible outcomes, and four of these 
produce a blue ball.

   Example: What is the probability that when two dice are 
rolled, the sum of the numbers on the two dice is 7?

    Solution:  By the product rule there are 62 = 36 possible 
outcomes. Six of these sum to 7. Hence, the probability of 
obtaining a 7 is 6/36 = 1/6. 



Applying Laplace’s Definition
     Example: In a lottery, a player wins a large prize when they pick four digits that 

match, in correct order, four digits selected by a random mechanical process. 
What is the probability that a player wins the  prize? 

     Solution: By the product rule there are 104 = 10,000 ways to pick four digits. 
 Since there is only 1 way to pick the correct digits, the probability of winning 

the large prize is 1/10,000 = 0.0001.

     A smaller prize is won if only three digits are matched. What is the probability 
that a player wins the small prize?

     Solution: If exactly three digits are matched, one of the four digits must be 
incorrect and the other three digits must be correct. For the digit that is 
incorrect, there are 9 possible choices. Hence, by the sum rule, there a total of 
36 possible ways to choose four digits that match exactly three of the winning 
four digits. The probability of winning the small price is 36/10,000 = 9/2500 = 
0.0036.



Applying Laplace’s Definition
   Example: There are many lotteries that award prizes to 

people who correctly choose a set of six numbers out of the 
first n positive integers, where n is usually between 30 and 
60. What is the probability that a person picks the correct 
six numbers out of 40?

   Solution: The number of ways to choose six numbers out of 
40 is 

           C(40,6) = 40!/(34!6!) = 3,838,380.
   Hence, the probability of picking a winning combination is 

1/ 3,838,380 ≈ 0.00000026.
    Can you work out the probability of winning the lottery with 

the biggest prize where you live?



Applying Laplace’s Definition
   Example: What is the probability that the numbers 11, 4, 

17, 39, and 23 are drawn in that order from a bin with 50 
balls labeled with the numbers 1,2, …, 50 if 
a) The ball selected is not returned to the bin.
b) The ball selected is returned to the bin before the next ball 

is selected.
    Solution: Use the product rule in each case.

a) Sampling without replacement: The probability is 
1/254,251,200 since there are  50 ∙49 ∙47 ∙46 ∙45  = 
254,251,200 ways to choose the five balls.

b)    Sampling with replacement: The probability is                       
1/505 = 1/312,500,000 since 505 = 312,500,000.



The Probability of Complements 
and Unions of Events
   Theorem 1: Let E be an event in sample space S. The 

probability of the event     = S − E, the complementary 
event of E, is given by

   Proof: Using the fact that |   | = |S| − |E|, 



The Probability of Complements 
and Unions of Events
   Example: A sequence of 10 bits is chosen randomly. 

What is the probability that at least one of these bits is 
0?

   Solution: Let E be the event that at least one of the 10 
bits is 0. Then     is the event that all of the bits are 1s. 
The size of the sample space S is 210. Hence,



The Probability of Complements 
and Unions of Events
   Theorem 2: Let E1 and E2  be events in the  sample 

space S. Then

   Proof: Given the inclusion-exclusion formula from 
Section 2.2, |A ∪ B| = |A| + | B| − |A ∩ B|,  it follows 
that



   Example: What is the probability that a positive 
integer selected at random from the set of positive 
integers not exceeding 100 is divisible by either 2 or 5?

   Solution: Let E1  be the event that  the integer is 
divisible by  2 and E2  be the event that it is divisible 5? 
Then the event that the integer is divisible by 2 or 5 is 
E1 ∪ E2 and E1 ∩ E2  is the  event that it is divisible by 2 
and 5. 

   It follows that: 
            p(E1 ∪ E2) = p(E1) + p(E2) – p(E1 ∩ E2)
                             = 50/100 + 20/100 − 10/100 = 3/5.

The Probability of Complements 
and Unions of Events



Monty Hall Puzzle
   Example: You are asked to select one of the three doors to open.  

There is a large prize behind one of the doors and if you select 
that door, you win the prize. After you select a door, the game 
show host opens one of the other doors (which he knows is not 
the winning door). The prize is not behind the door and he gives 
you the opportunity to switch your selection. Should you switch? 

    Solution: You should switch. The probability that your initial 
pick is correct is 1/3. This is the same whether or not you switch 
doors. But since the game show host always opens a door that 
does not have the prize, if you switch the probability of winning 
will be 2/3, because you win if your initial pick was not the 
correct door and the probability your initial pick was wrong is 
2/3.
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(This is a notoriously confusing problem that has been the subject of much 
discussion . Do a web search to see why!)



Section 7.2



Section Summary
 Assigning Probabilities
 Probabilities of Complements and Unions of Events
 Conditional Probability 
 Independence
 Bernoulli Trials and the Binomial Distribution
 Random Variables
 The Birthday Problem
 Monte Carlo Algorithms
 The Probabilistic Method (not currently included in 

the overheads)



Assigning Probabilities
   Laplace’s definition from the previous section, assumes that 

all outcomes are equally likely. Now we introduce a more 
general definition of probabilities that avoids this 
restriction.

 Let S be a sample space of an experiment with a finite 
number of outcomes. We assign a probability p(s) to each 
outcome s, so that:

i.         0 ≤ p(s) ≤ 1 for each s Î S

ii.   

 The function p from the set of all outcomes of the sample 
space S is called a probability distribution.



Assigning Probabilities
   Example: What probabilities should we assign to the 

outcomes H(heads) and T (tails) when a fair coin is 
flipped? What probabilities should be assigned to 
these outcomes when the coin is biased so that heads 
comes up twice as often as tails?

    Solution:    For a fair coin, we have p(H) = p(T) = ½.
    For a biased coin, we have p(H) = 2p(T).
    Because p(H) + p(T) = 1, it follows that
               2p(T) + p(T) = 3p(T) = 1.
    Hence, p(T) = 1/3  and  p(H) = 2/3. 



Uniform Distribution
   Definition: Suppose that S is a set with n elements. 

The uniform distribution assigns the probability 1/n to 
each element of S. (Note that we could have used 
Laplace’s definition here.)

   Example: Consider again the coin flipping example, 
but with a fair coin. Now p(H) = p(T) = 1/2. 



Probability of an Event
   Definition: The probability of the event E is the sum 

of the probabilities of the outcomes in E.

 Note that now no assumption is being made about the 
distribution.  



Example
   Example: Suppose that a die is biased so that 3 

appears twice as often as each other number, but that 
the other five outcomes are equally likely. What is the 
probability that an odd number appears when we roll 
this die?

   Solution: We want the probability of the event               
E = {1,3,5}. We have p(3) = 2/7 and 

      p(1) = p(2) = p(4) = p(5) = p(6) = 1/7.
    Hence, p(E) =  p(1) + p(3) + p(5) = 
                                     1/7 + 2/7 + 1/7 = 4/7.



Probabilities of Complements and 
Unions  of Events
 Complements:                                  still holds. Since 

each outcome is in either E or      , but not both,     

 Unions:
      also still holds under the new definition. 



Combinations of Events
   Theorem: If E1, E2, … is a sequence of pairwise disjoint 

events in a sample space S, then

see Exercises 36 and 37 for the proof



Conditional Probability
    Definition: Let E and F be events with p(F) > 0. The conditional 

probability of E given F, denoted by P(E|F), is defined as:

    Example: A bit string of length four is generated at random so 
that each of the 16 bit strings of length 4 is equally likely. What 
is the probability that it contains at least two consecutive 0s, 
given that its first bit is a 0?

    Solution: Let E be the event that the bit string contains at least 
two consecutive 0s, and F be the event that the first bit is a 0. 
 Since E ⋂ F = {0000, 0001, 0010, 0011, 0100}, p(E⋂F)=5/16.
 Because 8 bit strings of length 4 start with a 0, p(F) = 8/16= ½.

    Hence,



Conditional Probability
   Example: What is the conditional probability that a 

family with two children has two boys, given that they 
have at least one boy. Assume that each of the 
possibilities BB, BG, GB, and GG is equally likely where 
B represents a boy and G represents a girl.

   Solution: Let E be the event that the family has two 
boys and let  F be the event that the family has at least 
one boy. Then E = {BB}, F = {BB, BG, GB}, and                                               
E ⋂ F = {BB}.
 It follows that p(F) = 3/4 and  p(E⋂F)=1/4.

   Hence, 



Independence
    Definition: The events E and F are independent if and only if   
       
                           
    Example: Suppose E is the event that a randomly generated bit string 

of length four begins with a 1 and F is the event that this bit string 
contains an even number of 1s. Are E and F independent if the 16 bit 
strings of length four are equally likely? 

    Solution: There are eight bit strings of length four that begin with a 1, 
and eight bit strings of length four that contain an even number of 1s.
 Since the number of bit strings of length 4 is 16,

                                      
 Since E⋂F = {1111, 1100, 1010, 1001}, p(E⋂F) = 4/16=1/4.

    We conclude that E and F are independent, because 
                      p(E⋂F) =1/4 = (½) (½)= p(E) p(F) 

p(E⋂F) = p(E)p(F).

p(E) = p(F) = 8/16 = ½. 



Independence
   Example: Assume  (as in the previous example) that 

each of the four ways a family can have two children 
(BB, GG, BG,GB) is equally likely. Are the events E, that 
a family with two children has two boys, and F, that a 
family with two children has at least one boy, 
independent?

   Solution: Because E = {BB}, p(E) = 1/4.  We saw 
previously that that p(F) = 3/4 and  p(E⋂F)=1/4. The 
events  E and F are not independent since

              p(E) p(F) = 3/16 ≠ 1/4= p(E⋂F) .



Pairwise and Mutual Independence
   Definition: The events E1, E2, …, En are pairwise 

independent if and only if  p(Ei⋂Ej) = p(Ei) p(Ej) for all 
pairs i and j with i ≤ j ≤ n.

   The events are mutually independent if

    whenever ij, j = 1,2,…., m, are integers with 
             1 ≤ i1  < i2 <∙∙∙ < im ≤ n    and m ≥ 2.



Bernoulli Trials 

James Bernoulli
(1854 – 1705)

   Definition: Suppose an experiment can have only two 
possible outcomes, e.g., the flipping of a coin or the 
random generation of a bit. 
 Each performance of the experiment is called a Bernoulli trial. 
 One outcome is called a success and the other a failure. 
 If p is the probability of success and q the probability of 

failure, then p + q = 1. 
 Many problems involve determining the probability of k 

successes when an experiment consists of n mutually 
independent Bernoulli trials.

    



Bernoulli Trials 
   Example: A coin is biased so that the probability of heads 

is 2/3. What is the probability that exactly four heads 
occur when the coin is flipped seven times?

    Solution:  There are 27  = 128 possible outcomes. The 
number of ways four of the seven flips can be heads is 
C(7,4). The probability of each of the outcomes is 
(2/3)4(1/3)3   since the seven flips are independent. Hence, 
the probability that exactly four heads occur is   

              C(7,4) (2/3)4(1/3)3 =  (35∙ 16)/ 27 =  560/ 2187.



Probability of k Successes in n 
Independent Bernoulli Trials.
    Theorem 2: The probability of exactly k successes in n independent 

Bernoulli trials, with probability of success p and probability of failure 
q = 1 − p, is

                        C(n,k)pkqn−k.
     Proof: The outcome of n Bernoulli trials is an n-tuple (t1,t2,…,tn), 

where each is ti either S (success) or F (failure). The probability of each 
outcome of n trials consisting of k successes and k − 1 failures (in any 
order) is pkqn−k. Because there are C(n,k) n-tuples of Ss and Fs that 
contain exactly k Ss, the probability of k successes is C(n,k)pkqn−k.

 We denote by b(k:n,p) the probability of k successes in n  independent 
Bernoulli trials with p the probability of success. Viewed as a function 
of k, b(k:n,p) is the binomial distribution. By Theorem 2,

                           b(k:n,p) = C(n,k)pkqn−k.



Random Variables
   Definition: A random variable is a function from the 

sample space of an experiment to the set of real numbers. 
That is, a random variable assigns a real number to each 
possible outcome.

 A random variable is a function. It is not a variable, and it is 
not random! 

 In the late 1940s W. Feller and J.L. Doob flipped a coin to 
see whether both would use “random variable” or the more 
fitting “chance variable.” Unfortunately, Feller won and the 
term “random variable” has been used ever since.



Random Variables
    Definition: The distribution of a random variable X on a sample 

space S is the set of pairs (r, p(X = r)) for all r ∊ X(S), where p(X = 
r) is the probability that X takes the value r. 

    Example: Suppose that a coin is flipped three times. Let X(t) be 
the random variable that equals the number of heads that appear 
when t is the outcome. Then X(t) takes on the following values:
X(HHH) = 3, X(TTT) = 0,
X(HHT) = X(HTH) = X(THH) = 2,
X(TTH) = X(THT) = X(HTT) = 1.

    Each of the eight possible outcomes has probability 1/8. So, the 
distribution of X(t) is p(X = 3) = 1/8, p(X = 2) = 3/8,                           
p(X = 1) = 3/8, and p(X = 0) = 1/8.



The Famous Birthday Problem
 The puzzle of finding the number of people needed in a room to ensure that the 

probability of at least two of them having the same birthday is more than ½ has a 
surprising answer,  which we now find.

       Solution: We assume that all birthdays are equally likely and that there are 366 days in the year. First, 
we find the probability pn that at least two of n people have different birthdays.  

       Now, imagine the people entering the room one by one.  The probability that at least two have the 
same birthday  is 1− pn .
 The probability that the birthday of the second person is different from that of the first is 

365/366.
 The probability that the birthday of the third person is different from the other two, when these 

have two different birthdays, is  364/366.
 In general, the probability that the jth person has a birthday different from the birthdays of those 

already in the room, assuming that these people all have different birthdays,                                           
is  (366 − (j − 1))/366 = (367 − j)/366.

 Hence, pn = (365/366)(364/366)∙∙∙ (367 − n)/366.
 Therefore , 1− pn = 1−(365/366)(364/366)∙∙∙ (367 − n)/366.

      Checking various values for n with computation help tells us that for n = 22, 1− pn ≈ 0.457, and for n = 
23, 1− pn ≈ 0.506.  Consequently, a minimum number of 23 people are needed so that that the 
probability that at least two of them have the same birthday is greater than 1/2.



Monte Carlo Algorithms
 Algorithms that make random choices at one or more steps 

are called probabilistic algorithms.
 Monte Carlo algorithms  are probabilistic algorithms used 

to answer decision problems, which are problems that 
either have “true” or “false” as their answer.  
 A Monte Carlo algorithm consists of  a sequence of tests. For 

each test the algorithm responds “true” or ‘unknown.’ 
 If the response is “true,” the algorithm terminates with the  

answer is “true.”  
 After running a specified  sequence of tests where every step 

yields “unknown”, the algorithm outputs “false.”
 The idea is that the probability of the algorithm incorrectly 

outputting “false” should be very small as long as a sufficient 
number of tests are performed. 



Probabilistic Primality Testing
 Probabilistic  primality testing (see Example 16 in text) is an example of a 

Monte Carlo algorithm, which  is used to  find large primes to generate the 
encryption keys for RSA cryptography (as discussed in Chapter 4). 
 An integer n greater than 1 can be shown to be composite (i.e., not prime) if it 

fails  a particular test  (Miller’s test),  using a random integer b with 1 < b < n as 
the base. But if n passes Miller’s test for a particular base b, it may either be 
prime or composite. The probability that a composite integer passes n Miller’s 
test is for a random b, is less that ¼. 

 So failing the test,  is the “true” response in a Monte Carlo algorithm, and 
passing the test is “unknown.”

 If the test is performed k times (choosing a random integer b each time) and the  
number n passes Miller’s test at every iteration, then the probability that it is 
composite is less than (1/4)k.  So for a sufficiently, large k, the probability that n 
is composite even though it has passed all k iterations of Miller’s test  is small. 
For example, with 10 iterations, the probability that n is composite is less than 1 
in 1,000,000.


