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‘Recurrence Relations

(recalling definitions from Chapter 2)

Definition: A recurrence relation for the sequence {a, }
is an equation that expresses a,, in terms of one or
more of the previous terms of the sequence, namely,
a, a, .., a, , for all integers n with n = n,, where n, is a
nonnegative integer.

A sequence is called a solution of a recurrence relation
if its terms satisfy the recurrence relation.

The initial conditions for a sequence specify the terms
that precede the first term where the recurrence

relation takes effect. Initial ¥]44

Precede Z Hif
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Rabbits and the Fiobonacci Numbers

Example: A young pair of rabbits (one of each
gender) is placed on an island. A pair of rabbits does
not breed until they are 2 months old. After they are 2
months old, each pair of rabbits produces another pair
each month. Find a recurrence relation for the number
of pairs of rabbits on the island after n months,
assuming that rabbits never die.

This is the original problem considered by Leonardo
Pisano (Fibonacci) in the thirteenth century.  Breed %



Rabbits and the Fibonacci Numbers (cont.)

Reproducing pairs Young pairs Reproducing ‘ Young | Total
(at least two months old) (less than two months old) Month pairs pairs pairs
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Modeling the Population Growth of Rabbits on an Island
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Rabbits and the Fibonacci Numbers (cont.)

Solution: Let f, be the the number of pairs of rabbits after n months.

e There are is f; = 1 pairs of rabbits on the island at the end of the first
month.

e We also have f, = 1 because the pair does not breed during the first
month.

e To find the number of pairs on the island after n months, add the
number on the island after the previous month, {, ,, and the
number of newborn pairs, which equals f because each newborn
pair comes from a pair at least two months old,

Consequently the sequence {f,, } satisfies the recurrence relation
fo=f, + f,, for n=> 3 wit ‘the initial conditions fi=land f, =
The number of pairs of rabbits on the island after n months is given by
the nth Fibonacci number.
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The Tower of Hanoi

In the late nineteenth century, the French
mathematician Edouard Lucas invented a puzzle
consisting of three pegs on a board with disks of
different sizes. Initially all of the disks are on the first
peg in order of size, with the largest on the bottom.

: Puzzle @
Rules: You are allowed to move the disks one at a Board AHR

time from one peg to another as long as a larger  peg 47+
disk is never placed on a smaller. Disk
Goal: Using allowable moves, end up with all the

disks on the second peg in order of size with largest

on the bottom.




The Tower of Hanoi (continued)
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Peg 1 Peg 2 Peg 3

The Initial Position in the Tower of Hanoi Puzzle
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The Tower of Hanoi (continued)

Solution: Let {H,,} denote the number of moves needed to solve the Tower of Hanoi
Puzzle with n disks. Set up arecurrence relation for the sequence {H,}. Begin with n
disks on peg 1. We can transfer the top n —1 disks, following the rules of the puzzle, to

peg 3 using H,_, moves. S o D

Peg 1 Peg 2

First, we use 1 move to transfer the largest disk to the second peg. Then we transfer the
n —1 disks from peg 3 to peg 2 using H,_; additional moves. This can not be done in
fewer steps. Hence,

H, =2H, , +1.

The initial condition is H;= 1 since a single disk can be transferred from peg 1 to peg 2 in
one move.
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The Tower of Hanoi (continued)

We can use an iterative approach to solve this recurrence relation by repeatedly expressing H, in
terms of the previous terms of the sequence.

o
=2(2H, ,+1)+1=22H,_,+2+1
=22(2H, ;+1)+2+1=23H, ,+22+2+1

Geometric series 25 kb5 4]

=2mH 42n 24208 4+ 2+1 . 1y
1 Conjecture HE

=214 224203 4 . +2+1  becauseH,=1
=2" —1  usingthe formula for the sum of the terms of a geometric series

o There was a myth created with the puzzle. Monks in a tower in Hanoi are transferring 64 gold
disks from one peg to another following the rules of the puzzle. They move one disk each day.
When the puzzle is finished, the world will end.

e Using this formula for the 64 gold disks of the myth,
26% —1 = 18,446, 744,073,709,551,615
days are needed to solve the puzzle, which is more than 500 billion years.

» Reve’s puzzle (proposed in 1907 by Henry Dudeney) is similar but has 4 pegs. There is a well-
known unsettled conjecture for the the minimum number of moves needed to solve this
puzzle. (see Exercises 38-45)
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Counting Bit Strings

Example 3: Find a recurrence relation and give initial conditions for the number of bit strings of
length n without two consecutive 0s. How many such bit strings are there of length five?

Solution: Let a, denote the number of bit strings of length n without two consecutive 0s. To obtain
a recurrence relation for {a, } note that the number of bit strings of length n that do not have two

consecutive Os is the number of bit strings ending with a 0 plus the number of such bit strings
ending witha 1.

Now assume that n > 3.

The bit strings of length 7 ending with 1 without two consecutive 0s/ are the bit strings of length n —1 with no
two consecutive Os with a 1 at the end. Hence, there are a,,_; such bit strings.
[ )

The bit strings of length n ending with 0 without two consecutive Os are the bit strings of length n —2 with no two
consecutive Os with 10 at the end. Hence, there are a,_, such bit strings.

We conclude thata, =a,_; +a,_, forn > 3.

Number of bit strings
of length n with no
two consecutive 0s:

. -+
End with a 1:

- Consecutive &% ]

End with a 0:
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Bit Strings (continued)

The initial conditions are:
* a; = 2,since both the bit strings 0 and 1 do not have consecutive Os.
* a, = 3, since the bitstrings 01, 10, and 11 do not have consecutive 0s, while 00 does.

To obtain as, we use the recurrence relation three times to find that:
L a3:az+a1:3+2:5

b a4=a3+02=5+3=8
e a;=ay +a3; =8+5=13

Note that {a, } satisfies the same recurrence relation as the Fibonacci
sequence. Since a; = f; and a, = f,, we conclude that a,, =f,,,.

fi=1,f2=1,1f3=2,f4=3...

14
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ffnting the Ways to Parenthesize a

Product

Example: Find a recurrence relation for C,, the number of ways to parenthesize the product of
n + 1 numbers, X, - X; " X, * *** * X,,, to specify the order of multiplication.
Forexample, C; = 5, since all the possible ways to parenthesize 4 numbers are

(O x1) X ) X3, (o (X X)) x5, (xgrXx1) (- Xx3), X0 ((Xx1-%2) x3), o+ (X1 (x2°%3))

Solution: Note that however parentheses are inserted in x; * x; * x, * -** * x,, one “-” operator remains
outside all parentheses. This final operator appears between two of the n + 1 numbers, say x; and x;, ;.
Since there are C;, ways to insert parentheses in the product x, - x; - x, - ==-* x;, and C,_,_; ways to insert
parentheses in the product x;,; * X4, * -+ " X, we have

Crn=CoCr1+Ci1Crp+ -+ Cr_2C1 + C,,_1Cp
n—1

= G :
kZ:O ety Parenthesize 55

The initial conditions are C; =1 and C, = 1.

The sequence {C, } is the sequence of Catalan Numbers.
This recurrence relation can be solved using the method
of generating functions; see Exercise 41 in Section 8.4.

Catalan Numbers: https://baike.baidu.com/item/ K 4% =%/ 6125746 15
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Section Summary

Linear Homogeneous Recurrence Relations

Solving Linear Homogeneous Recurrence Relations
with Constant Coefficients.

Solving Linear Nonhomogeneous Recurrence
Relations with Constant Coefficients.

Constant 7 &=
Coefficients &%\
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~Ltinear Homogeneous Recurrence
Relations

Definition: A linear homogeneous recurrence relation of
degree k with constant coefficients is a recurrence relation
of the forma,=cja,_,+c,a,_, +..... + ¢, a,,_;, where

Cy, Cy, ....,C, are real numbers, and ¢, + 0

n—k,

* it is linear because the right-hand side is a sum of the previous terms of the sequence each
multiplied by a function of n.

* it is homogeneous because no terms occur that are not multiples of the a;s. Each
coefficient is a constant.

* the degree is k because a, is expressed in terms of the previous k terms of the sequence.

By strong induction, a sequence satisfying such a recurrence relation is uniquely determined
by the recurrence relation and the k initial conditions a, = C, ag = Cq ..., a_1 = Ci_1.

18



~Examples of Linear Homogeneous

Recurrence Relations

e P.=(1.11)P,, linear homogeneous recurrence
relation of degree one

e ( —f +[ linear homogeneous recurrence relation
of degree two

9 .
® ap = Gn—1 + a;_9 not linear
e H =2H,_,+1 not homogeneous
* B. =nB,_, coefficients are not constants

19



/‘V
-Solving Linear Homogeneous

Recurrence Relations

The basic approach is to look for solutions of the form

a, = ", where r is a constant.

Note that a,, = " is a solution to the recurrence relation

a,=cqa, 4+ C,a,_,+ -+, a,_, if and only if

Eoe Pl et el

Algebraic manipulation yields the characteristic equation:
rk— it —e k2 — e — P — ¢ =0

The sequence {a,} with a, =1 is asolution if and only if r
is a solution to the characteristic equation.

The solutions to the characteristic equation are called the
characteristic roots of the recurrence relation. The roots are used
to give an explicit formula for all the solutions of the recurrence
relation.

n—k

Characteristic $711F
20



Solving Linear Homogeneous Recurrence
Relations of Degree Two

Theorem 1: Let ¢, and ¢, be real numbers. Suppose
that r> — ¢;r - ¢, = 0 has two distinct roots r, and r.,.
Then the sequence {a,} is a solution to the recurrence
relation a,=cya,_,+ c,a,_, ifand onlyif

S2EE0sY n n
An = AT] + Ty

forn=0,1,2,..., where cand «a, are constants.

21
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Using Theorem 1

Example: What is the solution to the recurrence relation
a,=4a,_q+ 2a,_,withay=2and a; = 7?
Solution: The characteristic equationis r> — r —2 = 0.
Its rootsare r= 2 and r= —1. Therefore, {a,} is a solution to the recurrence relation if and
only if a, = a;2" + ay(—1)", for some constants «; and ;.
To find the constants o4 and «,, note that

Ap=2=a;+ 0, and a; =7 =042 + a,(—1).

Solving these equations, we find that o; =3 and o, = —1.

Hence, the solution is the sequence {a,} with a, = 3-:2" — (—-1)".

22



An Explicit Formula for the Fibonacci Numbers

We can use Theorem 1 to find an explicit formula for the
Fibonacci numbers. The sequence of Fibonacci numbers
satisfies the recurrence relation f,=f,_; + f,_, with the
initial conditions: f, =0 and f; = 1.

Solution: The roots of the characteristic equation
r’—r-1=0are

1 \/g
= —lz
T, 1_\/5

2

Explicit & 31

23
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Fibonacci Numbers (continued)

Therefore by Theorem 1
fn=0o1 (HT‘/E)R + oo (1_2\/3)71

for some constants «; and «,.

Using the initial conditions f, = 0 and f; =1, we have
Jo=ar+ax =0

f1 = 1 (_1-|_2\/3) “+ Q9 (—1_2\/5) il
. . il e 1
Solving, we obtain %1 = 5 © 2= 5,
Hence, 2 =

24
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The Solution when there is a Repeated Root

Theorem 2: Let ¢, and ¢, be real numbers with ¢, # 0.
Suppose that 1> — ¢;r - ¢, = 0 has one repeated root r,,.
Then the sequence {a,} is a solution to the recurrence
relation a, = c;a,,_; + c,a,_, if and only if

@, — arg | agﬁg

forn=20,1,2,..., where cand o, are constants.

25



Using Theorem 2

Example: What is the solution to the recurrence relation
a,=6a, ;1 —9a,_,witha,=1and a; = 67

Solution: The characteristic equationis r> —6r+ 9 = 0.

The only root is r = 3. Therefore, {a,} is a solution to the recurrence relation if and only if
a, = a;3" + a,n(3)"

where o; and o, are constants.

To find the constants o4 and o, note that
ap=1=a; and a;=6=04'3+ o 3.
Solving, we find that oy =1and o, =1 .

Hence,
(G e e e

26
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Solving Linear Homogeneous Recurrence
Relations of Arbitrary Degree

This theorem can be used to solve linear homogeneous
recurrence relations with constant coefficients of any degree
when the characteristic equation has distinct roots.

Theorem 3: Let ¢4, ¢,,..., ¢, be real numbers. Suppose that the
characteristic equation

rk = clrk_l —eer = () = 0

has k distinct roots ry, 1, ..., 1. Then a sequence {a,} isa
solution of the recurrence relation

a,=C10,_{+ Coly o+ ... +Cp
if and only if

d, — a1y L aprs ok apT
forn=0,1, 2, ..., where oy, a,,.., o, are constants.

n—k

27



The General Case with Repeated Roots Allowed

Theorem 4: Let ¢y, ¢, ,..., ¢, be real numbers. Suppose that the characteristic
equation

rk e Clrk_l S S Ck 222 0

has t distinct roots ry, 1, ..., r, with multiplicities my, m,, ..., m,, respectively so
thatm; > 1fori=0,1, 2, ..tand m; + m, + ... + m,= k. Then a sequence {a,}
is a solution of the recurrence relation

Cln == Clan_l + Czan_z Shavaaan + Ck a

if and only if

an = (10+011n+: -+ ey m1n™ Hr}

—I—(Oégjo R G E s et OéQ,mQ_l?’Lmz_l)Tg’
+ (ot o0t F Opm, 1™ TP

forn=0,1, 2, .., where o;; are constants for 1<i <t and 0< j<m,_;.

Multiplicities 5 %§ -



“Linear Nonhomogeneous Recurrence
Relations with Constant Coefficients

Definition: A linear nonhomogeneous recurrence relation

with constant coefficients is a recurrence relation of the
form:

A, =C1y_q+ Colpy_y + oo + C Ay + F(N)
where ¢, ¢,, ..., ¢ are real numbers, and F(n) is a function
not identically zero depending only on n.
The recurrence relation

an . Clan_l =+ Czan_z e + Ck an_k,

is called the associated homogeneous recurrence relation.

Identically {E & H

29
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Linear Nonhomogeneous Recurrence
Relations with Constant Coefficients (cont.)

The following are linear nonhomogeneous recurrence relations
with constant coefficients:

g g

a,=d, {+d, ,+n’+n+1,
a —sa. 4 R

(= e s S S Y

where the following are the associated linear homogeneous
recurrence relations, respectively:

dp =dp—1,

Un =dp—1+ dp—
a,=3a,_q,

dp =dp+dp— +dp-3

30
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