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Chapter Summary
 Applications of Recurrence Relations

 Solving Linear Recurrence Relations

 Homogeneous Recurrence Relations

 Nonhomogeneous Recurrence Relations

 Divide-and-Conquer Algorithms and Recurrence 
Relations

 Generating Functions

 Inclusion-Exclusion

 Applications of Inclusion-Exclusion
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Section Summary
 Applications of Recurrence Relations

 Fibonacci Numbers

 The Tower of Hanoi 

 Counting Problems
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Recurrence Relations 
(recalling definitions from Chapter 2)

Definition: A recurrence relation for the sequence {an} 
is an equation that expresses an in terms of one or 
more of the previous terms of the sequence, namely, 
a0, a1, …, an-1, for all integers n with n ≥ n0, where n0 is a 
nonnegative integer. 

 A sequence is called a solution of a recurrence relation 
if its terms satisfy the recurrence relation.

 The initial conditions for a sequence specify the terms 
that precede the first term where the recurrence 
relation takes effect. 
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Initial初始
Precede之前
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Rabbits and the Fiobonacci Numbers
Example: A young pair of rabbits (one of each 
gender) is placed on an island. A pair of rabbits does 
not breed until they are 2 months old. After they are 2 
months old, each pair of rabbits produces another pair 
each month. Find a recurrence relation for the number 
of pairs of rabbits on the island after n months, 
assuming that rabbits never die.

    This is the original problem considered by Leonardo 
Pisano (Fibonacci) in the thirteenth century.
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Rabbits and the Fibonacci Numbers (cont.)

Modeling the Population Growth of Rabbits on an Island
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Rabbits and the Fibonacci Numbers (cont.)
Solution: Let fn be the the number of pairs of rabbits after n months.
 There are is  f1 = 1 pairs of rabbits on the island at the end of the first 

month. 
 We also have f2 = 1 because the pair does not breed during the first 

month.
 To find the number of pairs on the island after n months, add the 

number on the island after the previous month, fn-1, and the  
number of newborn pairs, which equals fn-2, because each newborn 
pair comes from a pair at least two months old.

Consequently the sequence {fn } satisfies the recurrence relation                 
fn = fn-1  +  fn-2 for  n ≥  3 with the initial conditions  f1 = 1 and  f2 = 1. 
The number of pairs of rabbits on the island after n months is given by 
the nth Fibonacci number.
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The Tower of Hanoi
In the late nineteenth century, the French 
mathematician Édouard Lucas invented a puzzle 
consisting of three pegs on a board with disks of 
different sizes. Initially all of the disks are on the first 
peg in order of size, with the largest on the bottom.

   

Rules: You are allowed to move the disks one at a 
time from one peg to another as long as a larger 
disk is never placed on a smaller.
Goal: Using allowable moves, end up with all the 
disks on the second peg in order of size with largest 
on the bottom.
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The Tower of Hanoi (continued)

The Initial Position in the Tower of Hanoi Puzzle
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The Tower of Hanoi (continued)
Solution: Let {Hn} denote the number of moves needed to solve the Tower of Hanoi 
Puzzle with n disks. Set up a recurrence   relation for the sequence {Hn}. Begin with n 
disks on peg 1. We can transfer the top n −1 disks, following the rules of the puzzle, to 
peg 3 using Hn−1 moves. 

    

      First, we use 1 move to transfer the largest disk to the second peg. Then we  transfer the  
n −1 disks from peg 3 to peg 2 using Hn−1  additional moves. This can not be done in 
fewer steps. Hence, 

                            Hn = 2Hn−1 + 1.  
    The initial condition is H1= 1 since a single disk can be transferred from peg 1 to peg 2 in 

one move.
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The Tower of Hanoi (continued)
 We can use an iterative approach to solve this recurrence relation by repeatedly expressing Hn in 

terms of the previous terms of the sequence.

           Hn = 2Hn−1 + 1

     =  2(2Hn−2 + 1) + 1 = 22 Hn−2 +2 + 1

     =  22(2Hn−3 + 1) + 2 + 1 = 23 Hn−3 +22 + 2 + 1

     ⋮

     = 2n-1H1 + 2n−2 + 2n−3 + …. + 2 + 1

     = 2n−1 + 2n−2 + 2n−3 + …. + 2 + 1       because H1= 1 

     = 2n − 1       using the formula for the sum of the terms of a  geometric series

 There was a myth created with the puzzle. Monks  in a tower in Hanoi are transferring 64 gold 
disks from one peg to another following the rules of the puzzle.  They move one disk each day. 
When the puzzle is finished, the world will end. 

 Using this formula for the 64 gold disks of the myth, 

                 264  −1 = 18,446, 744,073, 709,551,615 

      days are needed to solve the puzzle, which is more than 500 billion years.

 Reve’s puzzle (proposed in 1907 by Henry Dudeney) is similar but has 4 pegs. There is a well-
known unsettled conjecture for the the minimum number of moves needed to solve this 
puzzle.  (see Exercises 38-45)
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Counting Bit Strings
Example 3: Find a recurrence relation and give initial conditions for the number of bit strings of 
length n without two consecutive 0s. How many such bit strings are there of length five?

      Solution: Let an denote the number of bit strings of length  n without two consecutive 0s.  To obtain 
a recurrence relation for {an } note that the number of bit strings of length n that do not have two 
consecutive 0s is the number of bit strings ending with a 0 plus the number of such bit strings 
ending with a 1. 

      Now assume that n ≥ 3. 

  The bit strings of length n ending with 1 without two consecutive 0s/ are the bit strings of length n −1 with no 
two consecutive 0s with a 1  at the end. Hence, there are an−1 such bit strings.

 The bit strings of length n ending with 0 without two consecutive 0s are the bit strings of length n −2 with no two 
consecutive 0s with 10  at the end. Hence, there are an−2 such bit strings.

       We conclude that an = an−1  + an−2  for n ≥ 3.
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Bit Strings (continued)

     The initial conditions are: 
 a1 = 2, since both the bit strings 0 and 1 do not have consecutive 0s.

 a2 = 3, since the bit strings 01, 10, and 11 do not have consecutive 0s, while 00 does.

     To obtain a5 , we use the recurrence relation three times to find that:

  a3 = a2 + a1 = 3 + 2 = 5

  a4 = a3 + a2 = 5+ 3 = 8

  a5 = a4 + a3 = 8+ 5 = 13
      

  

f1 = 1, f2 = 1, f3 = 2, f4 = 3…

Note that {an } satisfies the same recurrence relation as the Fibonacci 
sequence. Since a1 = f3 and  a2 = f4 , we conclude that an = fn+2 .
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Counting the Ways to Parenthesize a 
Product

Example: Find a recurrence relation  for Cn , the number of ways to parenthesize the product of 
  n + 1 numbers, x0 ∙ x1 ∙ x2 ∙ ⋯ ∙ xn, to specify the order of multiplication. 
  For example, C3 = 5, since all the possible ways to parenthesize 4 numbers are 

  ((x0 ∙ x1 )∙ x2 )∙ x3  ,    (x0 ∙ (x1 ∙ x2 ))∙ x3 ,    (x0 ∙ x1 )∙ (x2 ∙ x3 ),  x0 ∙ (( x1 ∙ x2 ) ∙ x3 ),     x0 ∙ ( x1 ∙ ( x2 ∙ x3 ))

Solution:  Note that however parentheses are inserted in x0 ∙ x1 ∙ x2 ∙ ⋯ ∙ xn, one  “∙” operator remains  
outside all parentheses. This final operator appears between two of the n + 1 numbers, say xk and xk+1. 
Since there are Ck  ways  to insert parentheses in the product x0 ∙ x1 ∙ x2 ∙ ⋯ ∙ xk  and  Cn−k−1 ways  to insert 
parentheses in the product xk+1 ∙ xk+2 ∙ ⋯ ∙ xn, we have 

The initial conditions are C0 = 1 and C1 = 1.

      

    

   

The sequence {Cn } is the sequence of Catalan Numbers. 
This recurrence  relation can be solved using the method 
of generating functions; see Exercise 41 in Section 8.4. 

Catalan Numbers: https://baike.baidu.com/item/卡特兰数/6125746

Parenthesize括号
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Section Summary
 Linear Homogeneous Recurrence Relations

 Solving Linear Homogeneous Recurrence Relations 
with Constant Coefficients. 

 Solving Linear Nonhomogeneous Recurrence 
Relations with Constant Coefficients.

Constant常量
Coefficients系数
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Linear Homogeneous Recurrence 
Relations

Definition: A linear homogeneous recurrence relation of 

degree k with constant coefficients is a recurrence relation 
of the form an = c1an−1 + c2an−2 + ….. + ck an−k , where                
c1, c2, ….,ck are real numbers, and ck ≠ 0 

• it is linear because the right-hand side is a sum of the previous terms of the sequence each 

multiplied by a function of n.
• it is homogeneous because no terms occur that are not multiples of the ajs. Each 
coefficient is a constant.
• the degree is k  because  an is expressed in terms of the previous k terms of the sequence. 

By strong induction, a sequence satisfying such a recurrence relation is uniquely determined 
by the recurrence relation and the k initial conditions a0 = C1, a0 = C1 ,… , ak−1 = Ck−1.
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Examples of Linear Homogeneous 
Recurrence Relations 
 Pn = (1.11)Pn-1 linear homogeneous recurrence 

relation of degree one

  fn = fn-1 + fn-2   linear homogeneous recurrence relation 
of degree two

                      not linear

 Hn = 2Hn−1 + 1   not homogeneous

 Bn = nBn−1 coefficients are not constants 
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Solving Linear Homogeneous 
Recurrence Relations
 The basic approach is to look for solutions of the form                          

an = rn, where r is a constant.  
 Note that an = rn  is a solution to the recurrence relation                     

an = c1an−1 + c2an−2 + ⋯ + ck an−k  if and only if                                 
rn = c1rn−1 + c2rn−2 + ⋯ + ck rn−k .

 Algebraic manipulation yields the characteristic equation: 

      rk − c1rk−1 − c2rk−2 − ⋯ − ck−1r  − ck   = 0

 The sequence {an} with  an = rn  is a solution if and only if r 
is a solution to the characteristic equation. 

 The solutions to the characteristic equation are called the 
characteristic roots of the recurrence relation. The roots are used 
to give an explicit formula for all the solutions of the recurrence 
relation. 

  
Characteristic特征
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Solving Linear Homogeneous Recurrence 
Relations of Degree Two

Theorem 1:  Let c1 and c2 be real numbers. Suppose 
that r2 – c1r – c2 = 0 has two distinct roots r1 and r2. 
Then the sequence {an} is a solution to the recurrence    
relation   an = c1an−1 + c2an−2   if and only if

    for n = 0,1,2,… , where α and α2 are constants.
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Using Theorem 1
Example: What is the solution to the recurrence relation  

           
            an = an−1 + 2an−2 with a0 = 2 and a1 = 7? 

    Solution: The characteristic equation is  r2 −  r − 2 = 0. 
    Its roots are r = 2 and r = −1 . Therefore, {an} is a solution to the recurrence relation if and
    only if  an = α12n + α2(−1)n, for some constants α1 and α2.
      
     To find the constants  α1 and α2, note that

            a0 = 2 = α1 + α2  and  a1 = 7 = α12 + α2(−1).

     Solving these equations, we find that   α1 = 3 and α2 = −1. 

     Hence, the solution is the sequence {an} with   an = 3∙2n − (−1)n.
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An Explicit Formula for the Fibonacci Numbers

We can use Theorem 1 to find an explicit formula for the 
Fibonacci numbers. The sequence of Fibonacci numbers 
satisfies the recurrence relation   fn = fn−1  +  fn−2 with the 
initial conditions: f0 = 0  and f1 = 1.

    Solution:  The roots of the characteristic equation                            
r2 – r – 1 = 0 are
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Fibonacci Numbers (continued)
Therefore by Theorem 1

     for some constants α1 and α2.

    Using the initial conditions f0 = 0 and  f1 = 1 , we have

     Solving, we obtain                                     .

     Hence, 

.

,
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The Solution when there is a Repeated Root
Theorem 2:  Let c1 and c2 be real numbers with c2 ≠ 0.  
Suppose that r2 – c1r – c2 = 0 has one repeated root r0. 
Then the sequence {an} is a solution to the recurrence  
relation an = c1an−1 + c2an−2  if  and only if

  for n = 0,1,2,… , where α and α2  are constants.
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Using Theorem 2
Example:  What is the solution to the recurrence  relation                                                                     
an = 6an−1 − 9an−2 with a0 = 1 and a1 = 6? 

    Solution: The characteristic equation is  r2 − 6r + 9 = 0. 
    The only root is  r = 3. Therefore,  {an} is a solution to the recurrence relation  if and only if  
                an = α13n + α2n(3)n                                                   
     where α1 and α2  are constants.

      To find the constants  α1 and α2, note that 
  
                a0 = 1 = α1 and       a1 = 6 = α1 ∙ 3 + α2 ∙3.

        Solving, we find that  α1 = 1 and    α2 = 1  .
       Hence, 
             an = 3n + n3n .
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Solving Linear Homogeneous Recurrence 
Relations of Arbitrary Degree

This theorem can be used to solve linear homogeneous 
recurrence relations with constant coefficients of any degree 
when the characteristic equation has distinct roots.

    Theorem 3: Let c1, c2 ,…, ck be real numbers. Suppose that the 
characteristic equation                   

          rk – c1rk−1 –⋯ – ck = 0 
    has k distinct roots r1, r2, …, rk. Then a sequence {an}   is a 

solution of the recurrence relation

        an = c1an−1 + c2an−2 + ….. + ck an−k

      if and only if

    for n = 0, 1, 2, …, where α1, α2,…, αk are constants. 
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The General Case with Repeated Roots Allowed 
Theorem 4: Let c1, c2 ,…, ck be real numbers. Suppose that the characteristic 
equation                   

              rk – c1rk−1 –⋯ – ck = 0 
     has t distinct roots r1, r2, …, rt with multiplicities  m1, m2, …, mt, respectively so 

that mi ≥ 1 for i = 0, 1, 2, …,t and m1 +  m2 +  … + mt = k. Then a sequence {an}   
is a solution of the recurrence relation

           an = c1an−1 + c2an−2 + ….. + ck an−k

       if and only if

     for n = 0, 1, 2, …, where αi,j are constants for 1≤ i ≤ t  and 0≤ j ≤ mi−1. 

Multiplicities重数
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Linear Nonhomogeneous Recurrence 
Relations with Constant Coefficients

Definition: A linear nonhomogeneous recurrence relation 

with constant coefficients is a recurrence relation of the 
form:

          an = c1an−1 + c2an−2 + ….. + ck an−k + F(n) ,

   where c1, c2, ….,ck are real numbers, and F(n) is a function 

not identically zero depending only on n.

    The recurrence relation

          an = c1an−1 + c2an−2 + ….. + ck an−k ,

   is called the associated homogeneous recurrence relation.

Identically恒定地
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Linear Nonhomogeneous Recurrence 
Relations with Constant Coefficients (cont.)

The following are linear nonhomogeneous recurrence relations 
with constant coefficients:

    an = an−1 + 2n
 ,

    an = an−1 + an−2 + n2 + n + 1, 

    an = 3an−1 +  n3n ,

    an = an−1 + an−2 + an−3 + n! 

    where the following are the associated linear homogeneous 
recurrence relations, respectively:

    an = an−1  ,

    an = an−1 + an−2, 

    an = 3an−1 ,

    an = an−1 + an−2 + an−3
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