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Chapter Summary
 Applications of Recurrence Relations

 Solving Linear Recurrence Relations

 Homogeneous Recurrence Relations

 Nonhomogeneous Recurrence Relations

 Divide-and-Conquer Algorithms and Recurrence 
Relations

 Inclusion-Exclusion
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Recurrence 递推关系
Linear 线性
Homogeneous 齐次
Nonhomogeneous 非齐次
Inclusion-Exclusion 包含互斥
Divide-and-Conquer 分治
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Section Summary
 Divide-and-Conquer Algorithms and Recurrence 

Relations

 Examples

 Binary Search

 Merge Sort

 Fast Multiplication of Integers

 Master Theorem

 Closest Pair of Points (not covered yet in these slides)

Binary二分的
Merge合并
Multiplication操纵 4



Divide-and-Conquer Algorithmic 
Paradigm

Definition: A divide-and-conquer algorithm  works by first  
dividing a problem into one or more instances of the same 
problem of smaller size and then conquering the problem 
using the solutions of the smaller problems to find a 
solution of the original problem.

    Examples:
 Binary search, covered in Chapters 3 and 5: It works by comparing 

the element to be located to the middle element. The original list is 
then split into two lists and the search continues recursively  in the 
appropriate sublist.

 Merge sort, covered in Chapter 5: A list is  split into two 
approximately equal sized sublists, each  recursively sorted by merge 
sort.  Sorting is done by successively merging pairs of lists. 

Instance 实例
Conquer 求解 5



Divide-and-Conquer Recurrence Relations

 Suppose that a recursive algorithm divides a problem 
of size n into a subproblems.

 Assume each subproblem is of size n/b.

 Suppose g(n) extra operations are needed in the 
conquer step.

 Then f(n) represents the number of operations to solve 
a problem of size n satisisfies the following recurrence 
relation:

            f(n) = af(n/b) + g(n)

 This is called a divide-and-conquer recurrence relation.
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Example: Binary Search
 Binary search reduces the search for an element in a 

sequence of size n to the search in a sequence of size n/2. 
Two comparisons are needed to implement this reduction;
 one to decide whether to search the upper or lower half of the 

sequence and 
 the other to determine if the sequence has elements.

 Hence, if f(n) is the number of comparisons required to 
search for an element in a sequence of size n, then

      when n is even.
        

f(n) = f(n/2) + 2

https://fhfirehuo.github.io/Attacking-Java-Rookie/Chapter03/BinarySearch.html
7



Example: Merge Sort
 The merge sort algorithm splits a list of n (assuming n 

is even) items to be sorted into two lists with n/2 
items. It uses fewer than n comparisons to merge the 
two sorted lists.

 Hence, the number of comparisons required to sort a 
sequence of size n,  is no more than than  M(n) where

      

        

M(n) = 2M(n/2) + n.

https://www.runoob.com/w3cnote/merge-sort.html
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Estimating the Size of Divide-and-Conquer 
Functions 

Theorem 1: Let f be an increasing function that 
satisfies the recurrence relation

              f(n) = af(n/b) + cnd

    whenever n is divisible by b, where a≥ 1, b is an 
integer greater than 1, and c is a positive real number. 
Then

    Furthermore, when n = bk and a ≠1, where k is a 
positive integer,

    where C1 = f(1) + c/(a−1) and C2 =  −c/(a−1). 

Divisible 可整除
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Complexity of Binary Search
Binary Search Example: Give a big-O estimate for the 
number of comparisons used by a binary search.

    Solution:  Since the number of comparisons used by 
binary search is f(n) = f(n/2) + 2 where n is even, by 
Theorem 1, it follows that f(n) is O(log n). 
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Estimating the Size of Divide-and-conquer 
Functions (continued)

Theorem 2. Master Theorem: Let f be an increasing 
function that satisfies the recurrence relation

              f(n) = af(n/b) + cnd

    whenever n = bk, where  k is a positive integer greater 
than 1, and c  and d are real numbers with c positive 
and d nonnegative. Then
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Complexity of Merge Sort
Merge Sort Example: Give a big-O estimate for the 
number of comparisons used by merge sort.

   Solution:  Since the number of comparisons used by 
merge  sort to sort a list of n elements is less than  
M(n) where M(n) = 2M(n/2) + n, by the master theorem 
M(n) is O(n log n). 
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Section Summary
 The Principle of Inclusion-Exclusion

 Examples

Principle 规则
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Principle of Inclusion-Exclusion

 In Section 2.2, we developed the following formula for 
the number of elements in the union of two finite sets:

 We will generalize this formula to finite sets of any 
size. 
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Two Finite Sets
Example: In a discrete mathematics class every student is a major in 

computer science or mathematics or both. The number of students 
having computer science as a  major (possibly along with mathematics) 
is 25; the number of students having mathematics as a major (possibly 
along with computer science) is 13; and the number of students 
majoring in both computer science and mathematics is 8. How many 
students are in the class?

     Solution: |A∪B| = |A| + |B| −|A∩B| 

                                    =  25 + 13 −8 = 30
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Three Finite Sets
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Three Finite Sets Continued
Example: A total of 1232 students have taken a course in Spanish, 879 
have taken a course in French, and 114 have taken a course in Russian. 
Further, 103 have taken courses in both Spanish and French, 23 have taken 
courses in both Spanish and Russian, and 14 have taken courses in both 
French and Russian. If 2092 students have taken a course in at least one of 
Spanish French and Russian, how many students have taken a course in all 
3 languages. 
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Solution: Let S be the set of students who have taken a course in Spanish, F 
the set of students who have taken a course in French, and R the set of 
students who have taken a course in Russian. Then, we have

    |S| = 1232, |F| = 879, |R| = 114, |S∩F| = 103, |S∩R| = 23, |F∩R| = 14, and 
|S∪F∪R| = 23.

     Using the equation 

           |S∪F∪R| = |S|+ |F|+ |R| − |S∩F| − |S∩R| − |F∩R| + |S∩F∩R|,

      we obtain 2092 = 1232 + 879 + 114 −103 −23 −14 + |S∩F∩R|.

       Solving for |S∩F∩R| yields 7.



Illustration of Three Finite Set 
Example
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The Principle of Inclusion-Exclusion
Theorem 1. The Principle of Inclusion-Exclusion: 
Let A1, A2, …, An be finite sets. Then:
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The Principle of Inclusion-Exclusion 
(continued)

Proof: An element in the union is counted exactly 
once in the right-hand side of the equation.  Consider 
an element a that is a member of r of the sets A1,…., An 
where 1≤  r ≤  n. 

 It is counted C(r,1) times by Σ|Ai|

 It is counted C(r,2) times by Σ|Ai ⋂Aj|

 In general, it is counted C(r,m) times by the summation 
of m of the sets Ai.
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right-hand side 左手边，数学中常用语



The Principle of Inclusion-Exclusion 
(cont)

 Thus the element is counted exactly

       C(r,1) − C(r,2) + C(r,3) − ⋯ + (−1)r+1 C(r,r) 

    times by the right hand side of the equation.

 By Corollary 2 of Section 6.4 and Binomial Theorem, 
we have

         C(r,0) − C(r,1) + C(r,2) − ⋯ + (−1)r C(r,r) = 0.

 Hence,

         1 =  C(r,0) = C(r,1) − C(r,2) + ⋯ + (−1)r+1 C(r,r).
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