
Chapter 8

With Question/Answer Animations

Copyright © McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw-Hill Education.

Chapter Summary
 Applications of Recurrence Relations

 Solving Linear Recurrence Relations

 Homogeneous Recurrence Relations

 Nonhomogeneous Recurrence Relations

 Divide-and-Conquer Algorithms and Recurrence
Relations

 Inclusion-Exclusion

2

Recurrence 递推关系
Linear 线性
Homogeneous 齐次
Nonhomogeneous 非齐次
Inclusion-Exclusion 包含互斥
Divide-and-Conquer 分治

Section 8.3

Section Summary
 Divide-and-Conquer Algorithms and Recurrence

Relations

 Examples

 Binary Search

 Merge Sort

 Fast Multiplication of Integers

 Master Theorem

 Closest Pair of Points (not covered yet in these slides)

Binary二分的
Merge合并
Multiplication操纵 4

Divide-and-Conquer Algorithmic
Paradigm

Definition: A divide-and-conquer algorithm works by first
dividing a problem into one or more instances of the same
problem of smaller size and then conquering the problem
using the solutions of the smaller problems to find a
solution of the original problem.

 Examples:
 Binary search, covered in Chapters 3 and 5: It works by comparing

the element to be located to the middle element. The original list is
then split into two lists and the search continues recursively in the
appropriate sublist.

 Merge sort, covered in Chapter 5: A list is split into two
approximately equal sized sublists, each recursively sorted by merge
sort. Sorting is done by successively merging pairs of lists.

Instance 实例
Conquer 求解 5

Divide-and-Conquer Recurrence Relations

 Suppose that a recursive algorithm divides a problem
of size n into a subproblems.

 Assume each subproblem is of size n/b.

 Suppose g(n) extra operations are needed in the
conquer step.

 Then f(n) represents the number of operations to solve
a problem of size n satisisfies the following recurrence
relation:

 f(n) = af(n/b) + g(n)

 This is called a divide-and-conquer recurrence relation.

6

Example: Binary Search
 Binary search reduces the search for an element in a

sequence of size n to the search in a sequence of size n/2.
Two comparisons are needed to implement this reduction;
 one to decide whether to search the upper or lower half of the

sequence and
 the other to determine if the sequence has elements.

 Hence, if f(n) is the number of comparisons required to
search for an element in a sequence of size n, then

 when n is even.

f(n) = f(n/2) + 2

https://fhfirehuo.github.io/Attacking-Java-Rookie/Chapter03/BinarySearch.html
7

Example: Merge Sort
 The merge sort algorithm splits a list of n (assuming n

is even) items to be sorted into two lists with n/2
items. It uses fewer than n comparisons to merge the
two sorted lists.

 Hence, the number of comparisons required to sort a
sequence of size n, is no more than than M(n) where

M(n) = 2M(n/2) + n.

https://www.runoob.com/w3cnote/merge-sort.html
8

Estimating the Size of Divide-and-Conquer
Functions

Theorem 1: Let f be an increasing function that
satisfies the recurrence relation

 f(n) = af(n/b) + cnd

 whenever n is divisible by b, where a≥ 1, b is an
integer greater than 1, and c is a positive real number.
Then

 Furthermore, when n = bk and a ≠1, where k is a
positive integer,

 where C1 = f(1) + c/(a−1) and C2 = −c/(a−1).

Divisible 可整除
9

Complexity of Binary Search
Binary Search Example: Give a big-O estimate for the
number of comparisons used by a binary search.

 Solution: Since the number of comparisons used by
binary search is f(n) = f(n/2) + 2 where n is even, by
Theorem 1, it follows that f(n) is O(log n).

10

Estimating the Size of Divide-and-conquer
Functions (continued)

Theorem 2. Master Theorem: Let f be an increasing
function that satisfies the recurrence relation

 f(n) = af(n/b) + cnd

 whenever n = bk, where k is a positive integer greater
than 1, and c and d are real numbers with c positive
and d nonnegative. Then

11

Complexity of Merge Sort
Merge Sort Example: Give a big-O estimate for the
number of comparisons used by merge sort.

 Solution: Since the number of comparisons used by
merge sort to sort a list of n elements is less than
M(n) where M(n) = 2M(n/2) + n, by the master theorem
M(n) is O(n log n).

12

Section 8.5

Section Summary
 The Principle of Inclusion-Exclusion

 Examples

Principle 规则

14

Principle of Inclusion-Exclusion

 In Section 2.2, we developed the following formula for
the number of elements in the union of two finite sets:

 We will generalize this formula to finite sets of any
size.

15

Two Finite Sets
Example: In a discrete mathematics class every student is a major in

computer science or mathematics or both. The number of students
having computer science as a major (possibly along with mathematics)
is 25; the number of students having mathematics as a major (possibly
along with computer science) is 13; and the number of students
majoring in both computer science and mathematics is 8. How many
students are in the class?

 Solution: |A∪B| = |A| + |B| −|A∩B|

 = 25 + 13 −8 = 30

16

Three Finite Sets

17

Three Finite Sets Continued
Example: A total of 1232 students have taken a course in Spanish, 879
have taken a course in French, and 114 have taken a course in Russian.
Further, 103 have taken courses in both Spanish and French, 23 have taken
courses in both Spanish and Russian, and 14 have taken courses in both
French and Russian. If 2092 students have taken a course in at least one of
Spanish French and Russian, how many students have taken a course in all
3 languages.

18

Solution: Let S be the set of students who have taken a course in Spanish, F
the set of students who have taken a course in French, and R the set of
students who have taken a course in Russian. Then, we have

 |S| = 1232, |F| = 879, |R| = 114, |S∩F| = 103, |S∩R| = 23, |F∩R| = 14, and
|S∪F∪R| = 23.

 Using the equation

 |S∪F∪R| = |S|+ |F|+ |R| − |S∩F| − |S∩R| − |F∩R| + |S∩F∩R|,

 we obtain 2092 = 1232 + 879 + 114 −103 −23 −14 + |S∩F∩R|.

 Solving for |S∩F∩R| yields 7.

Illustration of Three Finite Set
Example

19

The Principle of Inclusion-Exclusion
Theorem 1. The Principle of Inclusion-Exclusion:
Let A1, A2, …, An be finite sets. Then:

20

The Principle of Inclusion-Exclusion
(continued)

Proof: An element in the union is counted exactly
once in the right-hand side of the equation. Consider
an element a that is a member of r of the sets A1,…., An
where 1≤ r ≤ n.

 It is counted C(r,1) times by Σ|Ai|

 It is counted C(r,2) times by Σ|Ai ⋂Aj|

 In general, it is counted C(r,m) times by the summation
of m of the sets Ai.

21

right-hand side 左手边，数学中常用语

The Principle of Inclusion-Exclusion
(cont)

 Thus the element is counted exactly

 C(r,1) − C(r,2) + C(r,3) − ⋯ + (−1)r+1 C(r,r)

 times by the right hand side of the equation.

 By Corollary 2 of Section 6.4 and Binomial Theorem,
we have

 C(r,0) − C(r,1) + C(r,2) − ⋯ + (−1)r C(r,r) = 0.

 Hence,

 1 = C(r,0) = C(r,1) − C(r,2) + ⋯ + (−1)r+1 C(r,r).

22

	Default Section
	Slide 1: Advanced Counting Techniques
	Slide 2: Chapter Summary

	8.3
	Slide 3: Divide-and-Conquer Algorithms and Recurrence Relations
	Slide 4: Section Summary
	Slide 5: Divide-and-Conquer Algorithmic Paradigm
	Slide 6: Divide-and-Conquer Recurrence Relations
	Slide 7: Example: Binary Search
	Slide 8: Example: Merge Sort
	Slide 9: Estimating the Size of Divide-and-Conquer Functions
	Slide 10: Complexity of Binary Search
	Slide 11: Estimating the Size of Divide-and-conquer Functions (continued)
	Slide 12: Complexity of Merge Sort

	8.5
	Slide 13: Inclusion-Exclusion
	Slide 14: Section Summary
	Slide 15: Principle of Inclusion-Exclusion
	Slide 16: Two Finite Sets
	Slide 17: Three Finite Sets
	Slide 18: Three Finite Sets Continued
	Slide 19: Illustration of Three Finite Set Example
	Slide 20: The Principle of Inclusion-Exclusion
	Slide 21: The Principle of Inclusion-Exclusion (continued)
	Slide 22: The Principle of Inclusion-Exclusion (cont)

