Copyright © McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of M cGraw-Hill Education.

| Chapter Summary

Applications of Recurrence Relations

Solving Linear Recurrence Relations
e Homogeneous Recurrence Relations

e Nonhomogeneous Recurrence Relations

Divide-and-Conquer Algorithms and Recurrence

Relations

Inclusion-Exclusion Recurrence JHHEX 5
Linear &4
Homogeneous 55X
Nonhomogeneous 3F 551X

Inclusion-Exclusion 15 H J&
Divide-and-Conquer 7378

2

Section Summary

Divide-and-Conquer Algorithms and Recurrence
Relations

Examples
e Binary Search
e Merge Sort
e Fast Multiplication of Integers

Master Theorem
Closest Pair of Points (not covered yet in these slides)
Binary 471

Merge & I
Multiplication##Z)\ 4

e Sl

“Divide-and-Conquer Algorithmic
Paradigm

Definition: A divide-and-conquer algorithm works by first
dividing a problem into one or more instances of the same
problem of smaller size and then conquering the problem
using the solutions of the smaller problems to find a
solution of the original problem.

Examples:

 Binary search, covered in Chapters 3 and 5: It works by comparing
the element to be located to the middle element. The original list is
then split into two lists and the search continues recursively in the
appropriate sublist.

« Merge sort, covered in Chapter 5: A listis split into two
approximately equal sized sublists, each recursively sorted by merge
sort. Sorting is done by successively merging pairs of lists.

Instance SE43
Conquer K fi#

5

/

/V

e e
Divide-and-Conquer Recurrence Relations

Suppose that a recursive algorithm divides a problem
of size n into a subproblems.

Assume each subproblem is of size n/b.

Suppose g(n) extra operations are needed in the
conquer step.

Then f{n) represents the number of operations to solve
a problem of size n satisisfies the following recurrence
relation:

fln) = af(n/b) + g(n)

This is called a divide-and-conquer recurrence relation.

/

Example: Binary Search

Binary search reduces the search for an element in a
sequence of size n to the search in a sequence of size n/2.
Two comparisons are needed to implement this reduction;

e one to decide whether to search the upper or lower half of the
sequence and

e the other to determine if the sequence has elements.

Hence, if f{(n) is the number of comparisons required to
search for an element in a sequence of size n, then

fln) = fAin/2) + 2

when n is even.

https://fhfirehuo.github.io/Attacking-Java-Rookie/Chaptero3/BinarySearch.html
7

—— g
i

/

Example: Merge Sort

The merge sort algorithm splits a list of n (assuming n
is even) items to be sorted into two lists with n/2
items. It uses fewer than n comparisons to merge the
two sorted lists.

Hence, the number of comparisons required to sort a
sequence of size n, is no more than than M(n) where

M(n) = 2M(n/2) + n.

https://www.runoob.com/w3cnote/merge-sort.html

| _—
_Estimating the Size of Divide-and-Conquer

Functions

Theorem 1: Let f be an increasing function that
satisfies the recurrence relation

fln) = af{n/b) + cnd

whenever n is divisible by b, where a=> 1, b is an
integer greater than 1, and c is a positive real number.

Then 1 .
L Oles af g
f(n) IS{ Oloe)l kg —

Furthermore, when n = b*and a #1, where kisa
positive integer,
f(n) = C1nl98e + ¢,

where C; = f{1) +c¢/(a—1) and C, = —c/(a—1).

Divisible 1] % [%

Complexity of Binary Search

Binary Search Example: Give a big-O estimate for the
number of comparisons used by a binary search.

Solution: Since the number of comparisons used by
binary search is fin) = f{n/2) + 2 where n is even, by
Theorem 1, it follows that f{n) is O(log n).

10

~—Estimating the Size of Divide-a nd-conq'u'ér/

Functions (continued)

Theorem 2. Master Theorem: Let f be an increasing
function that satisfies the recurrence relation

fln) = afin/b) + cn?

whenever n = bX, where k is a positive integer greater
than 1, and ¢ and d are real numbers with c positive
and d nonnegative. Then

O(n%) i o 0
fln)is¢ Ontlopn) if a=0"

O(nlo8 @) it > bl

11

 —

/

Complexity of Merge Sort

Merge Sort Example: Give a big-O estimate for the
number of comparisons used by merge sort.

Solution: Since the number of comparisons used by
merge sort to sort a list of n elements is less than
M(n) where M(n) = 2M(n/2) + n, by the master theorem
M(n) is O(n log n).

12

Section Summary

* The Principle of Inclusion-Exclusion

* Examples

Principle }{)|

14

Principle of Inclusion-Exclusion

In Section 2.2, we developed the following formula for
the number of elements in the union of two finite sets:

| AUB| =|A|+ |B| — |AN B

We will generalize this formula to finite sets of any
size.

15

/

Two Finite Sets

Example: In a discrete mathematics class every student is a major in

computer science or mathematics or both. The number of students
having computer science as a major (possibly along with mathematics)
is 25; the number of students having mathematics as a major (possibly
along with computer science) is 13; and the number of students
majoring in both computer science and mathematics is 8. How many
students are in the class?

Solution: |AUB| = |A| + |B| —|ANB|
=25 L3 g~

|A U B|=|A|+|B|-IA N B|=25+13-8=30

|A|=25 AN B|=8 |B|=13

16

hree Finite Sets

ALBLIO] =
AL B e A B A B el A BE(]

L AGASEZY

—a—— P,

IO A XSSO

(a) Count of elements by (b) Count of elements by (c) Count of elements by
|Al+[B]+|c| |Al+[B|+]c|-|ANB|- |A[+|B|+|c|-|anB|-
lanc|-1BNc| l[Anc|-|BNcl+|AnBNC]|

17

L - i

/

Three Finite Sets Continued

Example: A total of 1232 students have taken a course in Spanish, 879
have taken a course in French, and 114 have taken a course in Russian.
Further, 103 have taken courses in both Spanish and French, 23 have taken
courses in both Spanish and Russian, and 14 have taken courses in both
French and Russian. If 2092 students have taken a course in at least one of

Spanish French and Russian, how many students have taken a course in all
3 languages.

Solution: Let S be the set of students who have taken a course in Spanish, F
the set of students who have taken a course in French, and R the set of
students who have taken a course in Russian. Then, we have

S| = 1232, |F| =879, |R| = 114, |SNF| = 103, |SNR| = 23, |FNR| = 14, and
|SUFUR| = 23.

Using the equation
ISUFUR| = |S|+ |F|+ |R| — |SNF| — |SNR| — |FNR| + |SNFNR|,
we obtain 2092 = 1232 + 879 + 114 —103 —23 —14 + |SNFNR|.

Solving for |[SNFNR| yields 7.
18

Example

|
fustration of Thre

|[sNnFNR|=2 [snF|=103

s
///’
//
SN
Is|=1232 / |F|=879
|sNR|=23 { |[FNR|=14
|R|=114

|SUFUR|=2092

19

The Principle of Inclusion-Exclusion

Theorem 1. The Principle of Inclusion-Exclusion:
LetA, A, ..., A be finite sets. Then:

<. 3

n

Y A= Y |Ain Ay

i=1 1<i<j<n

+ Y JANA N A -4 ()T AN N Ay

1<i<j<k<n

20

Wrinciplemgon{m

(continued)

Proof: An element in the union is counted exactly
once in the right-hand side of the equation. Consider
an element a that isa member of rof thesets A,,...., A
where 1< r< n.

e It is counted C(r,1) times by 2 |A |

e Itis counted C(r,2) times by Z |A; NA]

e In general, it is counted C(r,m) times by the summation

of m of the sets A..
right-hand side 234, #vrh# HE

%hﬂ?rinciplemgon{m

(cont)

e Thus the element is counted exactly
C(r,1) — C(r,2) + C(r,3) — .- + (—=1)™*L C(r,r)
times by the right hand side of the equation.

e By Corollary 2 of Section 6.4 and Binomial Theorem,
we have

C(r,0) — C(r,1) + C(r,2) — -+ (—=1)" C(r,r) = 0.
e Hence,
1= C(r,0) =C(r,1) — C(r,2) + --- + (=)™ C(r,r).

22

	Default Section
	Slide 1: Advanced Counting Techniques
	Slide 2: Chapter Summary

	8.3
	Slide 3: Divide-and-Conquer Algorithms and Recurrence Relations
	Slide 4: Section Summary
	Slide 5: Divide-and-Conquer Algorithmic Paradigm
	Slide 6: Divide-and-Conquer Recurrence Relations
	Slide 7: Example: Binary Search
	Slide 8: Example: Merge Sort
	Slide 9: Estimating the Size of Divide-and-Conquer Functions
	Slide 10: Complexity of Binary Search
	Slide 11: Estimating the Size of Divide-and-conquer Functions (continued)
	Slide 12: Complexity of Merge Sort

	8.5
	Slide 13: Inclusion-Exclusion
	Slide 14: Section Summary
	Slide 15: Principle of Inclusion-Exclusion
	Slide 16: Two Finite Sets
	Slide 17: Three Finite Sets
	Slide 18: Three Finite Sets Continued
	Slide 19: Illustration of Three Finite Set Example
	Slide 20: The Principle of Inclusion-Exclusion
	Slide 21: The Principle of Inclusion-Exclusion (continued)
	Slide 22: The Principle of Inclusion-Exclusion (cont)

