
Toward Privacy-Preserving Interdomain Configuration
Verification via Multi-Party Computation

Huisan Xu†, Qiuyue Qin†, Xing Fang†, Qiao Xiang†, Jiwu Shu†♦
†Xiamen Key Laboratory of Intelligent Storage and Computing, Xiamen University ♦Minjiang University

ABSTRACT
Interdomain network configuration errors can lead to dis-

astrous financial and social consequences. Although sub-
stantial progress has been made in using formal methods to
verify whether network configurations conform to certain
properties, current tools focus on a single network. The fun-
damental challenge of configuration verification in an inter-
domain network is privacy, because each autonomous system
(AS) treats its network configuration files as private informa-
tion and is not willing to share it with others. In this paper,
we take a first step toward interdomain network configu-
ration verification and propose InCV, a privacy-preserving
interdomain configuration verification system based on data-
oblivious computation. Given an interdomain network, InCV
allows ASes to collaboratively simulate the running of the
network and verify the resulting interdomain routing infor-
mation base (RIB) without revealing their network configu-
rations to any party. Preliminary evaluation using real-world
topologies and synthetic network configurations shows that
InCV can verify an interdomain network of 32 ASes within
∼52 minutes with reasonable overhead.
CCS CONCEPTS
• Networks → Error detection and error correction;

Network reliability; • Security and privacy → Domain-
specific security and privacy architectures;
KEYWORDS

Interdomain networks, Network verification, Secure multi-
party computation

Huisan Xu and Qiuyue Qin are co-primary authors. Qiao Xiang is the
corresponding author.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
APNET 2023, June 29–30, 2023, Hong Kong, China
© 2023 Copyright held by the owner/author(s). Publication rights licensed
to the Association for Computing Machinery.
ACM ISBN 979-8-4007-0782-7/23/06. . . $15.00
https://doi.org/10.1145/3600061.3600064

1 INTRODUCTION
The Border Gateway Protocol (BGP) [26] is the de facto

routing protocol used in interdomain networks. Interdomain
BGP configuration errors can cause substantial social and
financial losses in interdomain networks. In October 2021,
Facebook, Instagram, and WhatsApp suddenly became un-
reachable [3], with browsers displaying DNS errors when
attempting to open them. It was believed the outage was
caused by a BGP-related configuration error, which took the
operators over 5 hours to fix. Cloudflare suffered an outage
in 2019 that affected websites around the world [2]. Accord-
ing to Cloudflare, over 16 million Internet sites utilized their
services for performance enhancement, DDoS mitigation, or
other features. In November 2018, Nigerian internet service
provider MainOne admitted that it made a configuration
error during a network upgrade [4]. That error caused a dis-
ruption of key Google services by routing traffic to China
and Russia.

Given these frequent and serious outages in the real world,
it is a top priority for network operators to ensure the correct-
ness of interdomain BGP configurations. To this end, most
interdomain network operators depend on query-based tools
(e.g., ping, traceroute, and looking glasses) and human in-
teraction (e.g., the NANOG mailing lists and the INOC-DBA
phone systems). However, these tools are not only ineffi-
cient and error-prone, but also can only find errors after
deployment.
Network configuration verification: preventing config-
uration errors before deployment using formal meth-
ods. Over the past decade, substantial progress has been
achieved by network configuration verification tools [1, 6, 7,
13–15, 19, 22, 25, 28, 29, 35, 37]. These tools analyze network
configurations before they are deployed on network devices
to decide if they will compute a requirement-compliant data
plane. Many companies have deployed configuration verifi-
cation tools in their production networks (e.g., Batfish [14]
and Hoyan [35]).
Proposal: preventing interdomain network errors us-
ing interdomain configuration verification. With the
success of these tools [1, 6, 7, 13–15, 19, 35, 37], we propose
to extend network configuration verification to prevent net-
work failures in interdomain networks. The fundamental
challenge of the proposal lies in privacy. Specifically, in an

1

https://doi.org/10.1145/3600061.3600064

APNET 2023, June 29–30, 2023, Hong Kong, China Huisan Xu, Qiuyue Qin et al.

AS S AS B

AS C

AS DAS A AS E

AS F IP prefix P

prefer E as next hop

drop all paths containing E

Figure 1: An example of an interdomain network to
illustrate the need for interdomain configuration veri-
fication.
interdomain network, each AS considers its routing configu-
rations as highly sensitive information and must keep them
private. In contrast, existing network configuration verifica-
tion tools require collecting all the routing configurations
as input because they work under the setting of a single
network. A strawman solution is to deploy a configuration
verification tool at a trusted third party. However, such a
third party would become a single point of failure and secu-
rity vulnerability, and it is also hard to find such a party in
the current operation of interdomain networks.

Another design is to build a shadow BGP network among
ASes where ASes can interact to compute and check the
correctness of their data plane. This simple approach ap-
pears reasonable but has the following drawbacks: (1) it is
inefficient when verifying network properties under com-
plex scenarios. For example, to verify reachability under k
link failures [6], ASes have to run in the shadow network
for 𝐶𝑘

𝑛 times to cover all possible failure scenarios; (2) it re-
quires ASes to reveal their private data planes to other parties,
which would cause unnecessary information leakage.
InCV: privacy-preserving interdomain configuration
verification. To address the fundamental privacy challenge
of interdomain configuration verification, we design InCV, a
privacy-preserving interdomain configuration verification
system, using secure multi-party computation (SMPC). InCV
leverages Shamir’s secret sharing [27] to allow participating
ASes to collaboratively verify their BGP configurations while
keeping them private. We implement a prototype of InCV
and preliminary results using real-world topologies with
synthesized configurations show that InCV can verify an
interdomain network of 32 ASes within ∼52 minutes with
reasonable storage and communication overhead.
2 MOTIVATION AND BACKGROUND

In this section, we demonstrate the importance of interdo-
main configuration verification using a motivating example
and introduce related background.
2.1 A Motivating Example

Consider the network in Figure 1. All AS routers are config-
ured with standard BGP configurations, with the exception

of AS B preferring AS E as the next hop and AS S filtering
out all routes containing AS E. In such a setting, it is easy to
observe that AS S cannot reach the IP prefix P. In real-world
operations, AS S can only find that it cannot reach P after all
ASes deploy their configurations. To troubleshoot this issue,
operators typically need to use query-based tools (e.g., ping,
traceroute, and looking glasses) and ask for help on public
forums (e.g., the Nanog Mailing List). During the time of
troubleshooting, the IP prefix P will keep being unreachable
from AS S, causing financial and social loss. In contrast, if
a network configuration verification tool can be deployed
in this interdomain network, AS S can find this error before
all ASes deploy their configurations, avoiding unnecessary
service interruption and loss.
Privacy: the fundamental challenge of interdomain
configuration verification. Given the fact that ASes prefer
not to reveal their BGP configurations and that all current
configuration verification tools require configurations as
input, we argue that a practical interdomain configuration
verification tool must be able to function while keeping ASes’
configurations private. Operators’ feedback to our brief sur-
vey on the NANOG Mailing List [30] also corroborates this
point of view.
2.2 Background on Secure Multi-Party

Computation
Secure multi-party computation (SMPC) [33] addresses

scenarios in which 𝑛 parties 𝑃𝑖 , ..., 𝑃𝑛 hold private inputs
𝑥1, ..., 𝑥𝑛 and wish to compute 𝑦 = 𝑓 (𝑥1, ..., 𝑥𝑛) in such a
way that all parties learn 𝑦 but no 𝑃𝑖 learns anything about
𝑥 𝑗 , 𝑖 ≠ 𝑗 , except what is logically implied by the result 𝑦 and
the particular input 𝑥𝑖 that he already knew.

An SMPC algorithm consists of multiple SMPC primitives
(e.g., addition, multiplication and comparison). There are
different ways to build SMPC primitives. In this paper, we
choose to use Shamir’s secret sharing [27] because it has
been proven to be efficient for designing SMPC primitives
involving multiple parties (e.g., 𝑛 > 2) and has good scalabil-
ity [9, 23].

Shamir’s secret sharing. A (𝑡, 𝑛)-Shamir’s secret sharing
scheme allows a secret 𝑆 to be split and stored at 𝑛 partici-
pants such that an adversary (1) can only reconstruct 𝑆 when
he/she has the pieces from at least 𝑡 participants; (2) cannot
gain any information about 𝑆 if he/she has pieces from less
than 𝑡 participants. Shamir’s secret sharing [27] is based on
polynomial interpolation. It works in two phases:

(1) share generation: The owner of the secret 𝑆 first selects
a random polynomial 𝑓 (𝑥) of degree 𝑡 − 1 to carry the secret
and generates secret shares 𝑆𝑖 = 𝑓 (𝑖), where 𝑖 = 1, . . . , 𝑛. It
then sends each 𝑆𝑖 to participant 𝑖 .
(2) share reconstruction: By collecting more than 𝑡 shares,

we can generate the original coefficients of the polynomial
2

Interdomain Network Configuration Verification APNET 2023, June 29–30, 2023, Hong Kong, China

DO-Simulation

DO-DPV

Topology information
(public) can be accessed at
any time

Data Plane
 (secret)

…

User requirment (public)

Verification
result (public)

Configuration lines on each agent server are
highly sensitive secret information

InCV’s SMPC
protocol based on
shamir’s secret
sharing

P0
P1

P3 P4

Figure 2: An illustration for InCV’s architecture. All
ground routers dispatch their configurations to agents
on the cloud. The agents then collectively run the
InCV’s secure multi-party computation (SMPC) proto-
col
and reconstruct the secret by the Lagrange Interpolation
method, as is shown in Equations (1) and (2). In the equations,
𝑡 stands for the secret sharing threshold, 𝑆 𝑗 stands for the
secret shares of the corresponding participant, and 𝑝 is a
prime number indicating the field of computation.

𝐿 𝑗 (𝑥) = Π𝑡
𝑖=0

𝑥 − 𝑖
𝑗 − 𝑖 𝑚𝑜𝑑 𝑝 (𝑖 ≠ 𝑗); (1)

𝑓 (𝑥) = Σ𝑡𝑗=0𝑆 𝑗𝐿 𝑗 (𝑥) (2)

Data-oblivious computation. Data-oblivious computa-
tion [16, 24] is a key concept in building complex SMPC
algorithms. Given an algorithm, it is data-oblivious if and
only if given any input data, the sequence of operations of
this algorithm stays the same. Given an algorithm built ex-
clusively on SMPC primitives, if it is also data-oblivious, it
is also an SMPC algorithm [17]. Designing a data-oblivious
algorithm is non-trivial because most data structures are not
data-oblivious.
3 INCV DESIGN

Wenow present the design of InCV, an interdomain config-
uration verification system that enables operators of different
ASes to collaboratively determine whether their configura-
tions are correct while keeping their router configurations
private. For ease of exposition, we assume a one-big-switch
abstraction (i.e., one BGP router) for each AS.
3.1 Overview
Security model. InCV assumes a semi-honest security
model, where all ASes follow InCV’s workflow specifica-
tion but may collude to share information they obtain during
its execution [34]. This model is sufficient for multiple sce-
narios of interdomain routing, including commercial Inter-
net [18] and collaboration science networks where member

networks share resources to collaboratively conduct exascale
data transfers, storage, and analytics [11].
Architecture. Figure 2 presents the architecture of InCV.
Each participating AS deploys an agent containing its BGP
configurations in the cloud. The agents participate in the
InCV’s verification computation while keeping their con-
figurations private. An alternative design is to let each AS
deploy its agent in its local server and connect these local
servers. We choose the cloud for deploying ASes’ agents
instead for better scalability. Specifically, InCV adopts secure
multi-party computation for privacy-preserving verification,
which requires exchanging a large number of encrypted mes-
sages among agents. As such, deploying agents in a cloud
environment allows InCV to leverage the high bandwidth
and low latency of the cloud to improve its efficiency.
We choose to use the simulation-based verification ap-

proach (e.g., [14, 22, 25, 35]) in InCV, in which participating
ASes collaboratively compute the data plane of the interdo-
main network with their private BGP configurations and
examine the computed data plane to determine the correct-
ness of configurations. We do not use the SMT-based ap-
proach [6, 29] because it cannot encode paths compactly,
and checking the properties of paths (e.g., waypoint and
blacklist of ASes in AS paths) is important for interdomain
networks.
Workflow. The workflow of InCV is illustrated in Figure 2.
InCV provides an interface for operators from different ASes
to specify their requirements on AS paths as public infor-
mation. At the beginning of the verification, each AS locally
uses a modified version of Batfish [14] to transform its pri-
vate BGP configurations to a vendor-neutral intermediate
representation (IR). It then encodes the IR in the form of vec-
tors and matrices of integers and sends them to its own agent
as the input of DO-Simulation. This encoding is necessary
because vectors and matrices are data-oblivious data struc-
tures [20] but the original Batfish IR object is not. Note that
the transformation process from configurations to vector and
matrix formatted IR is conducted by each AS in plaintexts
individually.

After each agent receives such information from its corre-
sponding AS, they collaboratively execute a data-oblivious
simulation (DO-Simulation) algorithm to compute a secret
network data plane in an (IP prefix, AS path) mapping (i.e.,
no agent can independently know the network data plane)
without revealing their own IRs to any other agent. The
plaintext version of DO-Simulation is shown in Algorithm 1.
Afterward, agents continue to collaborate to execute a data-
oblivious data plane verification (DO-DPV) using the secret
network data plane computed by DO-simulation as the input
to verify whether the computed AS paths satisfy operator-
specified public requirements (e.g., reachability, waypointing,
and blacklisting).

3

APNET 2023, June 29–30, 2023, Hong Kong, China Huisan Xu, Qiuyue Qin et al.

Algorithm 1: BGP Simulation
Input: Origin is the announcement node of the given

prefix, N is the set of nodes in the network
Output: Best path to the given prefix of each node
Init: ∀𝑛 ∈ 𝑂𝑟𝑖𝑔𝑖𝑛 : 𝑏𝑒𝑠𝑡 (𝑛) ← 𝜀, 𝑎𝑑𝑣 (𝑛) ← 𝜀;
Init: ∀𝑛 ∈ 𝑁 −𝑂𝑟𝑖𝑔𝑖𝑛 : 𝑏𝑒𝑠𝑡 (𝑛) ← ∅, 𝑎𝑑𝑣 (𝑛) ← ∅;
while true do

𝐸 ← {𝑛 ∈ 𝑁 | 𝑎𝑑𝑣 (𝑛) ≠ ∅} ;
if 𝐸 = ∅ then

𝑏𝑟𝑒𝑎𝑘 ;
end
𝑛 ← 𝑝𝑖𝑐𝑘𝑁𝑜𝑑𝑒 (𝐸) ;
for each 𝑝𝑒𝑒𝑟 ∈ 𝑝𝑒𝑒𝑟𝑠 (𝑛) do

𝑒𝑥𝑝𝑜𝑟𝑡𝑠 ← Export(n,peer,adv(n)) ;
𝑖𝑚𝑝𝑜𝑟𝑡𝑠 ← Import(peer,n,exports) ;
𝑎𝑑𝑣 (𝑝𝑒𝑒𝑟) ← Compare(best(peer),imports);

end
𝑎𝑑𝑣 (𝑛) ← ∅ ;

end

3.2 DO-Simulation: Data-Oblivious
Network Simulation

Wenow present DO-Simulation, a privacy-preserving data
plane simulation algorithm. The objective of DO-Simulation
is to let AS agents collectively simulate their BGP configu-
rations to compute a network data plane stored as a (𝑡, 𝑛)-
Shamir secret while keeping their configurations private.

A non-data-oblivious BGP simulation algorithm. Al-
gorithm 1 gives the details of this algorithm for a given
destination IP prefix. In the initial state, only the origin node
has an origination route to the given prefix. The origination
route will then be put into the advertisement list and later an-
nounced to corresponding neighbors. The main simulation
process runs after initialization. In each iteration, one node
whose advertisement list is not empty will be chosen. Then,
the node will send the route advertisements in the list to its
neighbors. The export and import functions filter out route
advertisements that can not be sent out or received. The com-
pare function compares the import routes with the current
best path. If the import route has higher priority according to
the route attributes, the best path and advertisement list will
update. There are two types of route advertisements. One is
for advertising the new best route to neighbors, and one is
for notifying neighbors of the failure of the old route, just
like what BGP does in reality. Finally, a converged state is
reached if all node’s advertisement lists are empty, meaning
all nodes have computed their best route to the given prefix.

Transforming Algorithm 1 to DO-Simulation. We ac-
complish this goal in two steps. First, we implement all basic
operations (i.e., addition, multiplication, and comparison)
in Algorithm 1 using 𝑛-party SMPC primitives based on

Algorithm 2: Oblivious PriorityCompare
Input: r1,r2 are two routes with the same origin
Output: a boolean value indicating whether r2 is more

preferred than r1
Function Oblivious-PriorityCompare():

𝐶0 = 𝑟1.𝑙𝑝.𝑒𝑞𝑢𝑎𝑙 (𝑟2.𝑙𝑝)
𝐶1 = 𝑟1.𝑙𝑒𝑛.𝑒𝑞𝑢𝑎𝑙 (𝑟2.𝑙𝑒𝑛)
𝐶2 = 𝑟1.𝑚𝑒𝑑.𝑒𝑞𝑢𝑎𝑙 (𝑟2.𝑚𝑒𝑑)
𝐶3 = 𝑟1.𝐼𝐷.𝑒𝑞𝑢𝑎𝑙 (𝑟2.𝐼𝐷)
𝐶𝑜𝑚𝑝𝑎𝑟𝑒𝑅𝑒𝑠 =

(1 −𝐶0) ∗ 𝑟 .𝑙𝑝.𝑔𝑟𝑒𝑎𝑡𝑒𝑟_𝑡ℎ𝑎𝑛(𝑟2.𝑙𝑝)
+ 𝐶0 ∗ (1 −𝐶1) ∗ 𝑟1.𝑙𝑒𝑛.𝑙𝑒𝑠𝑠_𝑡ℎ𝑎𝑛(𝑟2.𝑙𝑒𝑛)
+ 𝐶0 ∗𝐶1 ∗ (1 −𝐶2) ∗ 𝑟1.𝑚𝑒𝑑.𝑙𝑒𝑠𝑠_𝑡ℎ𝑎𝑛(𝑟2.𝑚𝑒𝑑)
+ 𝐶0 ∗𝐶1 ∗𝐶2 ∗ (1 −𝐶3) ∗ 𝑟1.𝐼𝐷.𝑙𝑒𝑠𝑠_𝑡ℎ𝑎𝑛(𝑟2.𝐼𝐷)
return CompareRes;

Shamir’s secret sharing. Second, we make the control flow
of this algorithm data-oblivious. After these two steps, with
the security analysis in Secure-RAM [17], the overall algo-
rithm becomes an 𝑛-party SMPC algorithm that preserves
the private configurations of participating ASes.
A naive approach to make Algorithm 1 data-oblivious is

to apply oblivious random access machine (ORAM) tech-
nique [5] to it. However, it would result in high computation
and communication overhead due to the large amounts of
padding and obfuscation operations in ORAM. In contrast,
we transform Algorithm 1 to DO-Simulation with two key
designs.
First, we leverage domain knowledge during the simula-

tion to encode key data (e.g., route map, route announce-
ments, and RIBs) as vectors and matrices, which are data-
oblivious data structures. As such, subroutines of Algorithm 1
(e.g., 𝐼𝑚𝑝𝑜𝑟𝑡 , 𝐶𝑜𝑚𝑝𝑎𝑟𝑒 and 𝐸𝑥𝑝𝑜𝑟𝑡) can be rewritten as op-
erations of linear scans of these data structures. Second, for
each conditional statement (i.e., 𝑖 𝑓) in Algorithm 1, we let
DO-simulation execute both branches to ensure that the
execution of these statements is also data-oblivious. As an
example, we illustrate our design using the oblivious priority-
compare algorithm, a simple component in DO-Simulation
that decides which route has a higher priority, in Algorithm 2.
More examples of key components in DO-Simulation can be
found in our technical report [31].
Accelerating the simulation. Making an algorithm into
an SMPC version would cause high overhead. As such, we
leverage the design of FASTPLANE [22] to accelerate DO-
Simulation. The key idea is to let ASes with global optimal
route announcements send their updates first. For monotonic
networks, this design can generate the data plane efficiently
by choosing a proper propagation order. However, FAST-
PLANE can not be applied in networks that are not mono-
tonic. It is because the route withdrawal will occur when sim-
ulating according to the propagation order mentioned above

4

Interdomain Network Configuration Verification APNET 2023, June 29–30, 2023, Hong Kong, China

5 10 15 20 25 30
Number of ASes

100
101
102
103
104
105
106
107
108
109

Ve
ri

fic
at

io
n

Ti
m

e
(u

s)

InCV
InCV w/o SMPC

Figure 3: The verification time
of InCV, compared with the
non-SMPC version.

5 10 15 20 25 30
Number of ASes

0

20

40

60

80

100

G
lo

ba
l D

at
a

Se
nt

 (
G

B)

Figure 4: The global data sent
of InCV on different networks.

5 10 15 20 25 30
Number of ASes

0
100
200
300
400
500
600
700
800

Av
er

ag
e

Co
m

m
un

i-
ca

ti
on

 R
ou

nd
s

(k
)

Figure 5: The communication
rounds between parties on dif-
ferent networks.

7 12 17 22 27 32
Number of ASes

0
500

1000
1500
2000
2500
3000
3500
4000

Ve
ri

fic
at

io
n

Ti
m

e
(s

) InCV w/o Optimization
InCV

Figure 6: The verification time
of InCV, compared with the
version without optimization.

and FASTPLANE does not implement the withdrawal opera-
tion. To support the non-monotonic networks, we implement
the route withdrawal operation on top of FASTPLANE. We
note that in rare cases, such as when each router prefers the
route with longer paths, this design may cause an efficiency
decrease. However, experiments under all our datasets show
that in most cases it can accelerate the simulation process
by reducing the frequency of route withdrawals.

Current limitations. As a proof of concept, we have not
yet included the implementation of more complex operations
(e.g., regular expression matching) in DO-Simulation. There
is no theoretical obstacle preventing us from doing that.
We will include these operations in our next version of the
prototype.
3.3 DO-DPV: Data-Oblivious Verification

After DO-Simulation computes a secret network data plane
in an (IP prefix, AS path) mapping that is stored by partici-
pating ASes’ agents as a (𝑡, 𝑛)-Shamir secret, the DO-DPV
algorithm verifies network properties (e.g., reachability, way-
pointing, blacklisting) using a DFS-based traversal algorithm
to traverse from source AS to the destination AS holding the
destination IP prefix. To accelerate DO-DPV, we construct
an (IP-prefix, integer) mapping before the whole verification
process starts. As such, DO-DPV does not need to perform
any IP-prefix matching but only integer comparison. We will
include IP-prefix matching in DO-DPV to handle verification
queries on more specific IP prefixes.
3.4 Security Analysis

The security property of InCV follows the standard SMPC
analysis under the semi-honest securitymodel: the privacy of
BGP configurations of 𝑛 participating ASes will be preserved
as long as less than 𝑛/2 ASes are corrupted.
4 EVALUATION

In this section, we target at showing the capability of InCV.
We achieve this by making 3 comparisons. First, we make a
comparison between InCV and its clear-text version (an im-
plementation that does rely on SMPC) to show the overhead
of SMPC. With this, we can also evaluate the feasibility of
InCV. Second, we make a comparison between InCV and the
verification tool Batfish [14] to evaluate if InCV can generate
correct verification results while preserving privacy. Finally,

we make a comparison on InCV before and after optimiza-
tion. And the result suggests that our optimizations greatly
improve efficiency in monotonic networks.
Testbed. We implement our system on MP-SPDZ [21], a
versatile framework for multi-party computation. And all the
experiments are run on a Linux server with kernel version
5.4.0 and two Intel Xeon Silver 4210R 2.40GHz CPUs and
128GB of DDR4 DRAM.
Dataset. We use 27 synthesized networks ranging from 6
to 32 nodes as datasets. For each topology, we synthesize
configurations of each node that meets initial connection
requirements using NetComplete [12]. All configurations are
written in Cisco’s IOS language.

Overhead of SMPC in InCV. To illustrate the overhead
of SMPC in InCV, we additionally compose our clear-text
verifier in Java by implementing our Algorithm 1 in the nat-
ural way (where the solver collects all configurations and
run the simulation on the parsed intermediate representa-
tions). Figure 3 shows the running time for both verifiers.
Figure 4 and Figure 5 show the global data sent and rounds
of communication for InCV on networks scaling up to 32
ASes. The results show that achieving data-oblivious SMPC
in interdomain verification is quite costly in time, as agents
have to communicate hundreds of thousands of times on
end. However, for smaller topologies, the overhead is still
acceptable, at ∼52 minutes for 32 ASes.
Accuracy. To confirm the accuracy of Algorithm 1, we com-
pare the results of both InCV and its clear-text version with
that of Batfish [14]. For all 27 networks, the verifiers generate
consistent results with Batfish [14].
The performance of simulation optimization. To show
the effect of the optimization technique based on FAST-
PLANE. We also make a comparison between the InCV be-
fore and after optimization on the synthesized networks. The
comparison is plotted in Figure 6. It shows that ∼19% accel-
eration has been achieved for the network with 32 ASes, due
to fewer route withdrawals and fewer iterations during the
simulation. However, some extra experiments for networks
with complicated policies are required to better understand
the capability of this optimization.

5

APNET 2023, June 29–30, 2023, Hong Kong, China Huisan Xu, Qiuyue Qin et al.

5 DISCUSSION
We discuss several open research questions in regard to

interdomain network configuration verification.
Scaling the verification. The preliminary evaluation of
InCV shows that it may take up to 3089 seconds (i.e., 51 min-
utes) to verify an interdomain network of 32 ASes. In con-
trast, real-world interdomain networks have a larger scale,
e.g., the LHC science network has over 150 ASes and the In-
ternet has over 60 thousand ASes. As such, for interdomain
network configuration to be practical, we need to design
optimizations to scale verification computation for larger
networks. One direction toward this goal is to improve both
DO-Simulation and DO-DPV by designing a customized and
more-efficient SMPC protocol. A second approach is to de-
sign a more compact encoding of BGP configurations, e.g.,
increase the level of abstraction of BGP route attributes [8],
without compromising the correctness of the verification.
In addition, whether certain intermediate results can be re-
vealed during the verification without affecting the privacy-
preserving of ASes’ BGP configuration is also a possible way
to improve the system’s scalability.
Supporting more complex BGP route attributes and
interdomain network properties. As a proof of concept
of interdomain network configuration verification, InCV as-
sumes that route reachability equals forwarding reachability
and only implements limited BGP route attributes (e.g., lo-
cal preference). As such, how to verify interdomain BGP
configurations containing policies on more complex BGP
route attributes (e.g., community, multiple exit discriminator,
and AS set) is one of our ongoing investigations. In addi-
tion, we are also looking into how to extend DO-Simulation
with the symbolic route [32, 35] to efficiently verify network
properties under k-link-failure scenarios.
Incremental configuration verification. The current de-
sign of InCV does not support incremental verification. As
such, when an AS wants to update its configurations, InCV
has to rerun DO-simulation and DO-DPV from scratch to
verify the interdomain network, which is time-consuming
and may not be necessary. How to verify network configu-
rations incrementally is an important yet not well-studied
question for both interdomain networks and single-domain
networks. DNA [36] takes a first step toward incremental
network configuration verification. However, extending it
to a privacy-preserving interdomain setting may be difficult
because DNA builds its simulation on datalog, a program-
ming paradigm whose extensibility for secure multi-party
computation is still less understood. The approach we are
currently studying is to extend DO-Simulation to an incre-
mental setting. The critical challenge of this approach lies in
how to store and access the intermediate results in a privacy-
preserving yet efficient way.

Incremental deployment. Similar to interdomain routing
protocols, incremental deployment is also a critical chal-
lenge for interdomain network configuration verification.
Although we present the design of InCV assuming the par-
ticipation of all ASes in an interdomain network, InCV sup-
ports incremental deployment. For example, some ASes can
use InCV to collaboratively verify network properties that
only involve themselves by treating other neighboring ASes’
route announcements as external variables. After other ASes
witness the efficacy of InCV in preventing interdomain con-
figuration errors, they may be more willing to participate in
the operation of InCV.
Stronger security models. Although we believe that the
semi-honest security model adopted in designing InCV is
sufficient for normal operations of interdomain networks,
where operators are willing to help each other prevent net-
work errors, verifying interdomain network configurations
under stronger security models [10] (e.g., malicious adver-
saries and covert adversaries model) is still an important and
practical research question in security-critical scenarios such
as financial networks. We plan to study this issue after we
address other open questions discussed earlier.
6 CONCLUSION

In this paper, we advocate that interdomain network con-
figuration verification is an important and emerging research
area. We take a first step to bring privacy to network con-
figuration verification and design InCV, an interdomain net-
work configuration verification system where participating
ASes’ configurations are private. By leveraging SMPC, InCV
achieved privacy-preserving configuration verification in a
complicated interdomain network. Experiments show that
InCV can verify an interdomain network of 32 ASes with rea-
sonable computation and communication overhead. This pre-
liminary work shed light on many open research questions
such as scalability, incremental verification, and stronger
security guarantee of interdomain network configuration
verification.

Acknowledgments. We are extremely grateful for our
shepherd, Ennan Zhai, and the anonymous APNet’23 re-
viewers for their wonderful feedback. We also thank Timos
Antonopoulos, Hongyu Du, Franck Le, Ning Luo and Ruzica
Piskac for their help and suggestions during the preparation
of this paper. This work is supported in part by the Na-
tional Key R&D Program of China 2022YFB2901502, NSFC
Award #62172345, MOE of China Award #2021FNA02008,
Open Research Projects of Zhejiang Lab #2022QA0AB05,
and NSF Fujian China 2022J0-1004.

6

Interdomain Network Configuration Verification APNET 2023, June 29–30, 2023, Hong Kong, China

REFERENCES
[1] Anubhavnidhi Abhashkumar, Aaron Gember-Jacobson, and Aditya

Akella. 2020. Tiramisu: Fast Multilayer Network Verification. In
NSDI’20. USENIX, 201–219.

[2] Lawrence Abrams. 2019. BGP Route Leak Causes Cloudflare and Ama-
zon AWS Problems. https://www.bleepingcomputer.com/news/techno
logy/bgp-route-leak-causes-cloudflare-and-amazon-aws-problems/.

[3] Lawrence Abrams. 2021. Facebook, Instagram, and WhatsApp Back
Online after BGP Fix. https://www.bleepingcomputer.com/news/tech
nology/facebook-instagram-and-whatsapp-back-online-after-bgp-f
ix/.

[4] David Afolayan. 2018. How Bad is MainOne’s BGP Error and Why
They Must Prevent a Recurrence. https://technext24.com/2018/11/15.

[5] Miklós Ajtai. 2010. Oblivious RAMs without Cryptographic Assump-
tions. In STOC’10. ACM, 181–190.

[6] Ryan Beckett, Aarti Gupta, Ratul Mahajan, and David Walker. 2017.
A General Approach to Network Configuration Verification. In SIG-
COMM’17. ACM, 155–168.

[7] Ryan Beckett, Aarti Gupta, Ratul Mahajan, and David Walker. 2018.
Control Plane Compression. In SIGCOMM’18. ACM, 476–489.

[8] Ryan Beckett, Aarti Gupta, Ratul Mahajan, and David Walker. 2019.
Abstract Interpretation of Distributed Network Control Planes. In
POPL’19. ACM, 1–27.

[9] Michael Ben-Or, Shafi Goldwasser, and Avi Wigderson. 1988. Com-
pleteness Theorems for Non-Cryptographic Fault-Tolerant Distributed
Computation (Extended Abstract). In STOC’88. ACM, 1–10.

[10] Ran Canetti. 2001. Universally Composable Security: A New Paradigm
for Cryptographic Protocols. In FOCS’01. IEEE Computer Society, 136–
145.

[11] CERN. 2023. The Large Hadron Collider (LHC) Experiment. https:
//home.cern/topics/large-hadron-collider.

[12] Ahmed El-Hassanyr, Petar Tsankov, Laurent Vanbever, and Martin T
Vechev. 2018. Netcomplete: Practical Network-wide Configuration
Synthesis with Autocompletion. In NSDI’18. USENIX, 579–594.

[13] Seyed K Fayaz, Tushar Sharma, Ari Fogel, Ratul Mahajan, Todd Mill-
stein, Vyas Sekar, and George Varghese. 2016. Efficient Network Reach-
ability Analysis Using a Succinct Control Plane Representation. In
OSDI’16. USENIX, 217–232.

[14] Ari Fogel, Stanley Fung, Luis Pedrosa, Meg Walraed-Sullivan, Ramesh
Govindan, Ratul Mahajan, and Todd Millstein. 2015. A General Ap-
proach to Network Configuration Analysis. In NSDI’15. USENIX, 469–
483.

[15] Aaron Gember-Jacobson, Raajay Viswanathan, Aditya Akella, and
Ratul Mahajan. 2016. Fast Control Plane Analysis Using an Abstract
Representation. In SIGCOMM’16. ACM, 300–313.

[16] Oded Goldreich. 1987. Towards a Theory of Software Protection and
Simulation by Oblivious RAMs. Journal of the Acm 43, 3, 431–473.

[17] Steven Dov Gordon, Jonathan Katz, Vladimir Kolesnikov, Fernando
Krell, Tal Geula Malkin, Mariana Raykova, and Yevgeniy Vahlis. 2012.
Secure Two-party Computation in Sublinear (amortized) Time. In CCS
’12. ACM, 513–524.

[18] Andreas Haeberlen, Ioannis C Avramopoulos, Jennifer Rexford, and Pe-
ter Druschel. 2009. NetReview: Detecting When Interdomain Routing
Goes Wrong.. In NSDI’09. USENIX, 437–452.

[19] Karthick Jayaraman, Nikolaj Bjørner, Jitu Padhye, Amar Agrawal,
Ashish Bhargava, Paul-Andre C Bissonnette, Shane Foster, Andrew
Helwer, Mark Kasten, Ivan Lee, et al. 2019. Validating Datacenters at
Scale. In SIGCOMM’19. ACM, 200–213.

[20] Marcel Keller and Peter Scholl. 2014. Efficient, Oblivious Data Struc-
tures for MPC. In ASIACRYPT’14. Springer, 506–525.

[21] Marcel Kellerl. 2020. MP-SPDZ: A Versatile Framework for Multi-Party
Computation. In CCS’20. ACM, 1575–1590.

[22] Nuno P. Lopes and Andrey Rybalchenko. 2019. Fast BGP Simulation
of Large Datacenters. In VMCAI’19. Springer, 386–408.

[23] Takashi Nishide and Kazuo Ohta. 2007. Multiparty Computation
for Interval, Equality, and Comparison Without Bit-Decomposition
Protocol. In PKC’07. Springer, 343–360.

[24] Rafail Ostrovsky. 1990. Efficient Computation on Oblivious RAMs. In
STOC’90. ACM, 514–523.

[25] Santhosh Prabhu, Kuan Yen Chou, Ali Kheradmand, Brighten Godfrey,
and Matthew Caesar. 2020. Plankton: Scalable Network Configuration
Verification Through Model Checking . In NSDI’20. USENIX, 953–967.

[26] Yakov Rekhter and Tony Li. 1995. A Border Gateway Protocol 4 (BGP-
4). RFC Editor . https://doi.org/10.17487/RFC1771

[27] A. Shamir. 1979. How to Share a Secret. Commun. ACM 22, 11, 612–613.
[28] A. Wang, L. Jia, W. Zhou, Y. Ren, B. T. Loo, J. Rexford, V. Nigam, A.

Scedrov, and C. Talcott. 2012. FSR: Formal Analysis and Implementa-
tion Toolkit for Safe Interdomain Routing. IEEE/ACM Transactions on
Networking 20, 6, 1814–1827.

[29] Konstantin Weitz, Doug Woos, Emina Torlak, Michael D Ernst, Arvind
Krishnamurthy, and Zachary Tatlock. 2016. Scalable Verification of
Border Gateway Protocol Configurations With an SMT Solver. In
OOPSLA’16. ACM, 765–780.

[30] Huisan Xu. 2022. Network Configuration Survey. https://mailman.na
nog.org/pipermail/nanog/2022-November/220861.html.

[31] Huisan Xu, Qiuyue Qin, Xing Fang, Qiao Xiang, and Jiwu Shu. 2023.
InCV-TR.pdf. http://sngroup.org.cn/publication.html.

[32] Rulan Yang, Xing Fang, Lizhao You, Qiao Xiang, Hanyang Shao, Gao
Han, Ziyi Wang, Jiwu Shu, and Linghe Kong. 2023. Diagnosing Dis-
tributed Routing Configurations Using Sequential Program Analysis.
In APNET’23. ACM, 85–92.

[33] Andrew Chi-Chih Yao. 1982. Protocols for Secure Computations (Ex-
tended Abstract). In SFCS’08. IEEE, 160–164.

[34] Andrew Chi-Chih Yao. 1986. How to Generate and Exchange Secrets.
In SFCS’86. IEEE, 162–167.

[35] Fangdan Ye, Da Yu, Ennan Zhai, Hongqiang Harry Liu, Bingchuan
Tian, Qiaobo Ye, Chunsheng Wang, Xin Wu, Tianchen Guo, Cheng Jin,
Duncheng She, Qing Ma, Biao Cheng, Hui Xu, Ming Zhang, Zhiliang
Wang, and Rodrigo Fonseca. 2020. Accuracy, Scalability, Coverage: A
Practical Configuration Verifier on a Global WAN. In SIGCOMM’20.
ACM, 599–614.

[36] Peng Zhang, Aaron Gember-Jacobson, Yueshang Zuo, Yuhao Huang,
Xu Liu, and Hao Li. 2022. Differential Network Analysis. In NSDI’22.
USENIX, 601–615.

[37] Peng Zhang, Dan Wang, and Aaron Gember-Jacobson. 2022. Symbolic
Router Execution. In SIGCOMM’22. ACM, 336–349.

7

 https://www.bleepingcomputer.com/news/technology/bgp-route-leak-causes-cloudflare-and-amazon-aws-problems/
 https://www.bleepingcomputer.com/news/technology/bgp-route-leak-causes-cloudflare-and-amazon-aws-problems/
https://www.bleepingcomputer.com/news/technology/facebook-instagram-and-whatsapp-back-online-after-bgp-fix/
https://www.bleepingcomputer.com/news/technology/facebook-instagram-and-whatsapp-back-online-after-bgp-fix/
https://www.bleepingcomputer.com/news/technology/facebook-instagram-and-whatsapp-back-online-after-bgp-fix/
https://technext24.com/2018/11/15
https://home.cern/topics/large-hadron-collider
https://home.cern/topics/large-hadron-collider
https://doi.org/10.17487/RFC1771
https://mailman.nanog.org/pipermail/nanog/2022-November/220861.html
https://mailman.nanog.org/pipermail/nanog/2022-November/220861.html
http://sngroup.org.cn/publication.html

APNET 2023, June 29–30, 2023, Hong Kong, China Huisan Xu, Qiuyue Qin et al.

A DETAILS OF DO-SIMULATION
A.1 A Formal Definition for Data-oblivious

Algorithms
Given a program Π. Let Π(𝑛, 𝑥) denote the execution of

the program Π on an input 𝑥 using 𝑛 memory cells. Also, let
Π̃(𝑛, 𝑥) denote the memory access pattern of Π(𝑛, 𝑥). 𝐶 (Π)
= Π′. 𝜇 denotes a function such that for any 𝑛 ∈ N, for any
program Π and for any input 𝑥 ∈ {0, 1}∗, the probability that
Π′ (𝑛, 𝑥) outputs an overflow is at most 𝜇 (𝑛).
In order to find such a 𝐶 (Π) = Π′, which stands for the

data-oblivious version of Π, the following Lemmas must be
satisfied.

Lemma A.1. Let 𝑛 ∈ N and 𝑥 ∈ {0, 1}∗. Given a program
Π, with probability at least 1 − 𝜇 (𝑛), the output of Π′ (𝑛, 𝑥) is
identical to the output of Π(𝑛, 𝑥). (Equivalence Lemma)

Lemma A.2. Given two programs Π1 and Π2 and two in-
puts 𝑥1, 𝑥2 ∈ {0, 1}∗ such that

��Π̃1 (𝑥1, 𝑛)
�� = ��Π̃2 (𝑥2, 𝑛)

��, with
probability at least 1 − 2𝜇 (𝑛), the access patterns Π̃′1 (𝑥1, 𝑛)
and Π̃′2 (𝑥2, 𝑛) are identical. (Obliviousness Lemma)

A.2 An Example Subroutine in
DO-Simulation

Algorithm 3 illustrates how DO-Simulation manages to
update ASes’ RIBs obliviously. For concreteness of exposition,

we use notation [𝑥] to indicate that the value of x is kept
secret by the Shamir’s secret sharing scheme.

In general, this algorithm uses the idea similar to Insertion
sort to realize the function. 𝑅𝐼𝐵(𝑛) [𝑖] stands for the 𝑖𝑡ℎ entry
in the RIB of AS 𝑛.

Algorithm 3: Oblivious InsertToRIB
Input: RIB(n) is the RIB of AS n, R is the routing

information to be processed,MAX_SIZE is the
pre-defined maximum volume of a RIB.

Output: R is inserted into proper position in RIB(n)
[𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛] ← 0;
[𝑈𝑝𝑑𝑎𝑡𝑒𝐹𝑙𝑎𝑔] ← 0 ;
for 𝑖 ← 0 𝑡𝑜 𝑀𝐴𝑋_𝑆𝐼𝑍𝐸 − 1 do

[CompareRes] =
PriorityCompare([R],[RIB(n)[i]]).greater_than(0)
[Position] =
[Position] * (1-[CompareRes]) + (i+1) * [CompareRes]

for 𝑖 ← 𝑀𝐴𝑋_𝑆𝐼𝑍𝐸 − 2 𝑡𝑜 0 do
[UpdateFlag] = 1 - i.less_than([Position])
[RIB(n)[i+1]] =
[RIB(n)[i+1]]*
(1-[UpdateFlag])+[RIB(n)[i]]*[UpdateFlag]
[RIB(n)[i]] =
R * i.equal([Position])+[RIB(n)[i]]*(1-i.equal([Position]))

8

	Abstract
	1 Introduction
	2 Motivation and Background
	2.1 A Motivating Example
	2.2 Background on Secure Multi-Party Computation

	3 InCV Design
	3.1 Overview
	3.2 DO-Simulation: Data-Oblivious Network Simulation
	3.3 DO-DPV: Data-Oblivious Verification
	3.4 Security Analysis

	4 Evaluation
	5 Discussion
	6 Conclusion
	References
	A Details of DO-Simulation
	A.1 A Formal Definition for Data-oblivious Algorithms
	A.2 An Example Subroutine in DO-Simulation

